MPU6050欧拉角计算旋转后三维坐标平面与水平面(初始xoy平面)夹角算法(外旋)-程序员宅基地

技术标签: 算法  python  c++  Arduion  c语言  

前言

        MPU6050六轴传感器可通过加速度传感器和陀螺仪同时输出加速度和角速度,配合一些开源项目(fusion、DMP等)计算出相应的四元素和欧拉角等,可通过欧拉角计算出旋转后的三维坐标系的各平面(旋转后得到的xoy平面、xoz平面、yoz平面)与水平面(初始xoy平面)夹角。

欧拉角旋转定义(重要)

        在使用欧拉角演示旋转之前,必须先规定欧拉角旋转顺序!!!(z->y->x or z->x->y等顺序)因为在围绕x轴、y轴、z轴旋转相同的角度,顺序不一样最后得到的旋转姿态会有所不同。大部分开源旋转顺序计算使用的是z-y-x顺序旋转包括MPU6050自带的DMP融合算法。

欧拉角外旋

        欧拉角外旋通俗讲就是使用世界坐标系,在一些开源项目里使用加速度和角速度计算出的欧拉角,无论MPU6050处于什么样的状态上电,x轴和y轴组成的平面始终平行于水平面。

        (重要!!!)在外旋的旋转过程中,因为已经规定了旋转顺序,正常来说就必须按照旋转轴的顺序进行旋转。在正常的外旋情况下,排在前面的旋转轴先进行旋转时,不会影响排在后面顺序的轴初始状态的改变(因为世界坐标的缘故)。但是如果排在后面的旋转轴先旋转了,再旋转排在前面的旋转轴,就会导致前面旋转轴初始方向的改变。

欧拉角内旋

        欧拉角内旋就是使用本地坐标系,即初始三维坐标的x轴和y轴组成的平面就是MPU6050芯片上电时所处的平面。

        (重要!!!)在内旋的旋转过程中,因为已经规定了旋转顺序,正常来说就必须按照旋转轴的顺序进行旋转。在正常的内旋情况下,排在前面的旋转轴先进行旋转时,会影响排在后面顺序的轴初始状态的改变(后面的旋转轴会绕着排在前面的旋转轴旋转相同的旋转角度,并改变初始方向,后面的旋转轴根据前面旋转后得到的新的旋转轴再进行旋转)。如果排在后面的旋转轴先旋转了,再旋转排在前面的旋转轴,也会导致前面旋转轴初始方向的改变。

万向节死锁(重要!!)

        内旋:当我规定了以z-y-x顺序旋转时。如果y轴先旋转,并且刚好旋转了90°,(因为后面的旋转会影响前面轴初始态的缘故)就会导致z轴和x轴重合且方向相同,我再进行z轴或者x轴旋转,欧拉角x和z就会同时递增或者递减;如果y轴先旋转,并且刚好旋转了-90°,(因为后面的旋转会影响前面轴初始态的缘故)就会导致z轴和x轴重合且方向相反,我再进行z轴或者x轴旋转,欧拉角x和z就会同时一个递增一个递减

        外旋:当我规定了以z-y-x顺序旋转时。如果y轴先旋转,并且刚好旋转了-90°,(因为后面的旋转会影响前面轴初始态的缘故)就会导致z轴和x轴重合且方向相同,我再进行z轴或者x轴旋转,欧拉角x和z就会同时递增或者递减;如果y轴先旋转,并且刚好旋转了90°,(因为后面的旋转会影响前面轴初始态的缘故)就会导致z轴和x轴重合且方向相反,我再进行z轴或者x轴旋转,欧拉角x和z就会同时一个递增一个递减

        同理:规定了其他旋转顺序进行旋转时,只要在中间的旋转轴先旋转,并且刚好旋转了90°或-90°,就会发生万向节死锁。

关于欧拉角内旋和外旋问题可以通过Github上的开源项目rotation_master进行演示方便理解(感谢这位大神)

Release v20220112 · iwatake2222/rotation_master · GitHub

MPU6050缺陷

        MPU6050在没有外部磁力传感器的作用下时,芯片就没法获取地磁数据(地球磁力),所以就会导致欧拉角z在不断改变(上电初始化后,在使用一段时间后回到初始状态欧拉角z会有莫名其妙的角度,并且内旋外旋都存在这个问题),欧拉角z不断改变的结果就是:在三维旋转坐标中,x轴和y轴的初始方向的改变。

算法衍生

        虽然x轴和y轴的初始方向在不断改变,但他们所组成的xoy平面是不会改变的,所以在规定了一定旋转顺序旋转后的三维坐标各平面与初始xoy平面所构成的面面角就不会因为z轴(欧拉角z)的不确定性而发生改变,算法的构思适用于内旋和外旋,但是算法不同。

        面面角取值范围为0°—180°,可根据欧拉角的正负号判定面面角的正负号,就能给出旋转角度为-180°—180°,从而就能得出所有旋转状态返回的三个面面角组成的数组唯一性。(这里只给出了C/C++的正负号判断,Python重写很简单,但是我懒)

C/C++代码(外旋)

// 绕某旋转后点及初始轴
double *RodriguesRotate(double angle, double x1, double y1, double z1, double x2, double y2, double z2){

    double sin_angle = sin(angle * M_PI / 180.0);
    double cos_angle = cos(angle * M_PI / 180.0);
  
    double x = x1 * cos_angle + (y2 * z1 - z2 * y1) * sin_angle + x2 * (x2 * x1 + y2 * y1 + z2 * z1) * (1 - cos_angle);
    double y = y1 * cos_angle + (z2 * x1 - x2 * z1) * sin_angle + y2 * (x2 * x1 + y2 * y1 + z2 * z1) * (1 - cos_angle);
    double z = z1 * cos_angle + (x2 * y1 - y2 * x1) * sin_angle + z2 * (x2 * x1 + y2 * y1 + z2 * z1) * (1 - cos_angle);
    
    double *verts = new double [3];
    verts[0] = x;
    verts[1] = y;
    verts[2] = z;
    
    return verts;
}

// 过原点平面法向量计算
double *normal_vector(double x1,double y1,double z1,double x2,double y2,double z2){

    double a = (y1*z2)-(y2*z1);
    double b = (z1*x2)-(z2*x1);
    double c = (x1*y2)-(x2*y1);

    double *normal_vectors = new double [3];
    normal_vectors[0] = a;
    normal_vectors[1] = b;
    normal_vectors[2] = c;  
    
    return normal_vectors;
}

// 旋法向量与初始xoy平面法向量夹角
double dihedral_angle(double x, double y, double z){
    double angle = acos((x * 0 + y * 0 + z * 1) / sqrt(x * x + y * y + z * z)) * 180 / M_PI;
    return angle;
}



//主函数:
    
    Serial.print("欧拉角X : ");Serial.print(mpu6050.getAngleX());
    Serial.print("\t欧拉角Y : ");Serial.print(mpu6050.getAngleY());
    Serial.print("\t欧拉角Z : ");Serial.println(mpu6050.getAngleZ());

    // 定义初始点坐标
    double verts[4][3] = {
   {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

    // 计算X轴,Y轴旋转后初始坐标
    double *Sz_Y = RodriguesRotate(mpu6050.getAngleZ(),verts[2][0], verts[2][1], verts[2][2], verts[3][0], verts[3][1], verts[3][2]);
    double *Sz_X = RodriguesRotate(mpu6050.getAngleZ(), verts[1][0], verts[1][1], verts[1][2], verts[3][0], verts[3][1], verts[3][2]);
    double *Szy_X = RodriguesRotate(mpu6050.getAngleY(), Sz_X[0], Sz_X[1], Sz_X[2], Sz_Y[0], Sz_Y[1], Sz_Y[2]);

    // 计算旋转后点坐标
    double new_o[3] = {verts[0][0], verts[0][1], verts[0][2]};
    
    double *x_rz = RodriguesRotate(mpu6050.getAngleZ(), verts[1][0], verts[1][1], verts[1][2], verts[3][0], verts[3][1], verts[3][2]);
    double *x_ry = RodriguesRotate(mpu6050.getAngleY(), x_rz[0],x_rz[1],x_rz[2],Sz_Y[0],Sz_Y[1],Sz_Y[2]);
    double *new_x = RodriguesRotate(mpu6050.getAngleX(), x_ry[0],x_ry[1],x_ry[2],Szy_X[0],Szy_X[1],Szy_X[2]);
    if(!x_rz) delete(x_rz);
    if(!x_ry) delete(x_ry);

    double *y_rz = RodriguesRotate(mpu6050.getAngleZ(), verts[2][0], verts[2][1], verts[2][2], verts[3][0], verts[3][1], verts[3][2]);
    double *y_ry = RodriguesRotate(mpu6050.getAngleY(), y_rz[0],y_rz[1],y_rz[2],Sz_Y[0],Sz_Y[1],Sz_Y[2]);
    double *new_y = RodriguesRotate(mpu6050.getAngleX(), y_ry[0],y_ry[1],y_ry[2],Szy_X[0],Szy_X[1],Szy_X[2]);
    if(!y_rz) delete(y_rz);
    if(!y_ry) delete(y_ry);

    double *z_rz = RodriguesRotate(mpu6050.getAngleZ(), verts[3][0], verts[3][1], verts[3][2], verts[3][0], verts[3][1], verts[3][2]);
    double *z_ry = RodriguesRotate(mpu6050.getAngleY(), z_rz[0],z_rz[1],z_rz[2],Sz_Y[0],Sz_Y[1],Sz_Y[2]);
    double *new_z = RodriguesRotate(mpu6050.getAngleX(), z_ry[0],z_ry[1],z_ry[2],Szy_X[0],Szy_X[1],Szy_X[2]);
    if(!z_rz) delete(z_rz);
    if(!z_ry) delete(z_ry);

    if(!Sz_Y) delete(Sz_Y);
    if(!Sz_X) delete(Sz_X);
    if(!Szy_X) delete(Szy_X);

    // 旋转后的三维坐标系的点组成的三个面的法向量
    double *normal_vector_xoy = normal_vector(new_x[0], new_x[1], new_x[2], new_y[0], new_y[1], new_y[2]);
    double *normal_vector_xoz = normal_vector(new_x[0], new_x[1], new_x[2], new_z[0], new_z[1], new_z[2]);
    double *normal_vector_yoz = normal_vector(new_y[0], new_y[1], new_y[2], new_z[0], new_z[1], new_z[2]);
    if(!new_x) delete(new_x);
    if(!new_y) delete(new_y);
    if(!new_z) delete(new_z);

    // 法向量与初始xoy平面法向量夹角
    double dihedral_angle_xoy = dihedral_angle(normal_vector_xoy[0], normal_vector_xoy[1], normal_vector_xoy[2]);
    double dihedral_angle_xoz = dihedral_angle(normal_vector_xoz[0], normal_vector_xoz[1], normal_vector_xoz[2]);
    double dihedral_angle_yoz = dihedral_angle(normal_vector_yoz[0], normal_vector_yoz[1], normal_vector_yoz[2]);

    //范围:-180°<——>+180°
    if (normal_vector_yoz[2] >= 0) {
      Serial.print("XY与水平面夹角:");
      Serial.print(dihedral_angle_xoy);
    }
    else{
      Serial.print("XY与水平面夹角:");
      Serial.print(- dihedral_angle_xoy);
    }
    if (normal_vector_xoy[2] >= 0) {
      Serial.print("XZ与水平面夹角:");
      Serial.print(dihedral_angle_xoz);
    }
    else {
      Serial.print("XZ与水平面夹角:");
      Serial.print(- dihedral_angle_xoz);
    }
    if (normal_vector_xoz[2] >= 0) {
      Serial.print("YZ与水平面夹角:");
      Serial.print(dihedral_angle_yoz);
    }
    else{
      Serial.print("YZ与水平面夹角:");
      Serial.print(- dihedral_angle_yoz);
    }

    if(!normal_vector_xoy) delete(normal_vector_xoy);
    if(!normal_vector_xoz) delete(normal_vector_xoz);
    if(!normal_vector_yoz) delete(normal_vector_yoz);

Python代码(外旋)(使用numpy)

import math
import numpy as np

# 计算绕某轴旋转后的点及顺序后的旋转轴
def RodriguesRotate(angle, v, u):
    '''向量v绕向量u旋转角度θ,得到新的向量vert
    罗德里格斯旋转公式:v' = vcosθ + (u×v)sinθ + (u·v)u(1-cosθ)

    args:
        v:向量,维度为(3,)
        u:作为旋转轴的向量,维度为(3,)
        angle:旋转角度θ,此处默认为角度值
    returns:
        vert:旋转后得到的向量,维度为(3,)
    '''
    u = u / np.linalg.norm(u)  # 计算单位向量
    sin_angle = np.sin(angle * np.pi / 180)
    cos_angle = np.cos(angle * np.pi / 180)
    vert = v * cos_angle + np.cross(u, v) * sin_angle + np.dot(u, v) * u * (1 - cos_angle)
    verts = vert.tolist()
    return verts

# 计算旋转后三维坐标系的各平面法向量
def normal_vector(x1,y1,z1,x2,y2,z2,x3,y3,z3):

    a = (y2-y1)*(z3-z1)-(y3-y1)*(z2-z1)
    b = (z2-z1)*(x3-x1)-(z3-z1)*(x2-x1)
    c = (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1)
    verts = (a, b, c)
    return verts

# 计算旋转后三维坐标系的各平面与初始xoy平面夹角
def dihedral_angle(x, y, z):
    angle = math.acos((x * 0 + y * 0 + z * 1) / (x**2 + y**2 + z**2)**0.5) * 180 / math.pi
    return angle


def test(X, Y, Z):

    # 定义初始三维坐标系单位初始点坐标
    verts = [(0, 0, 0),(1, 0, 0), (0, 1, 0), (0, 0, 1)]

    # X轴,Y轴经旋转顺序后的初始向量坐标
    # 严格按照z-y-x旋转顺序进行计算
    Sz_Y = RodriguesRotate(Z, np.array(verts[2]), np.array(verts[3]))
    Sz_X = RodriguesRotate(Z, np.array(verts[1]), np.array(verts[3]))
    Szy_X = RodriguesRotate(Y, np.array(Sz_X), np.array(Sz_Y))
    print("y轴经过z轴旋转后状态:",Sz_Y)
    print("x轴经过z轴旋转后状态:",Sz_X)
    print("x轴经过z轴和y轴旋转后状态:",Szy_X)

    # 经旋转顺序后定义的单位点坐标
    # 严格按照z-y-x旋转顺序进行计算
    verts_z = [RodriguesRotate(Z, np.array(vert), np.array(verts[3])) for vert in verts]
    verts_zy = [RodriguesRotate(Y, np.array(vert), np.array(Sz_Y)) for vert in verts_z]
    verts_zyx = [RodriguesRotate(X, np.array(vert), np.array(Szy_X)) for vert in verts_zy]

    # 旋转后的三维坐标系的各个点组成的三个面
    xoy1 = [verts_zyx[0] + verts_zyx[1] + verts_zyx[2]]
    xoz1 = [verts_zyx[0] + verts_zyx[1] + verts_zyx[3]]
    yoz1 = [verts_zyx[0] + verts_zyx[2] + verts_zyx[3]]

    # 旋转后三维坐标系中三个平面的法向量
    normal_vector_xoy = [normal_vector(vert[0], vert[1], vert[2], vert[3], vert[4], vert[5], vert[6], vert[7], vert[8])
                         for vert in xoy1]
    normal_vector_xoz = [normal_vector(vert[0], vert[1], vert[2], vert[3], vert[4], vert[5], vert[6], vert[7], vert[8])
                         for vert in xoz1]
    normal_vector_yoz = [normal_vector(vert[0], vert[1], vert[2], vert[3], vert[4], vert[5], vert[6], vert[7], vert[8])
                         for vert in yoz1]

    # 法向量与初始xoy平面法向量(oz向量)夹角
    # 两平面法向量夹角就是面面角
    dihedral_angle_xoy = [dihedral_angle(vert[0], vert[1], vert[2]) for vert in normal_vector_xoy]
    dihedral_angle_xoz = [dihedral_angle(vert[0], vert[1], vert[2]) for vert in normal_vector_xoz]
    dihedral_angle_yoz = [dihedral_angle(vert[0], vert[1], vert[2]) for vert in normal_vector_yoz]
    print("旋转后三维坐标系中的xoy平面与初始xoy平面夹角:", dihedral_angle_xoy)
    print("旋转后三维坐标系中的xoz平面与初始xoy平面夹角:", dihedral_angle_xoz)
    print("旋转后三维坐标系中的yoz平面与初始xoy平面夹角:", dihedral_angle_yoz)

test(45,45,45) # 参数为欧拉角x,欧拉角y,欧拉角z

Python代码(外旋)(不使用numpy)

import math

# 计算绕某轴旋转后的点及顺序后的旋转轴
def RodriguesRotate(angle, x1, y1, z1, x2, y2, z2):

    sin_angle = math.sin(angle * math.pi / 180)
    cos_angle = math.cos(angle * math.pi / 180)

    x = x1 * cos_angle + (y2 * z1 - z2 * y1) * sin_angle + x2 * (x2 * x1 + y2 * y1 + z2 * z1) * (1 - cos_angle);
    y = y1 * cos_angle + (z2 * x1 - x2 * z1) * sin_angle + y2 * (x2 * x1 + y2 * y1 + z2 * z1) * (1 - cos_angle);
    z = z1 * cos_angle + (x2 * y1 - y2 * x1) * sin_angle + z2 * (x2 * x1 + y2 * y1 + z2 * z1) * (1 - cos_angle);
    verts = (x, y, z)
    return verts

# 计算旋转后三维坐标系的各平面法向量
def normal_vector(x1,y1,z1,x2,y2,z2,x3,y3,z3):

    a = (y2-y1)*(z3-z1)-(y3-y1)*(z2-z1)
    b = (z2-z1)*(x3-x1)-(z3-z1)*(x2-x1)
    c = (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1)
    verts = (a, b, c)
    return verts

# 计算旋转后三维坐标系的各平面与初始xoy平面夹角
def dihedral_angle(x, y, z):
    angle = math.acos((x * 0 + y * 0 + z * 1) / (x**2 + y**2 + z**2)**0.5) * 180 / math.pi
    return angle


def test(X, Y, Z):

    # 定义初始三维坐标系单位初始点坐标
    verts = [(0, 0, 0),(1, 0, 0), (0, 1, 0), (0, 0, 1)]

    # 经旋转顺序后定义的单位点坐标
    # 严格按照z-y-x旋转顺序进行计算
    Sz_Y = RodriguesRotate(Z, verts[2][0], verts[2][1], verts[2][2], verts[3][0], verts[3][1], verts[3][2])
    Sz_X = RodriguesRotate(Z, verts[1][0], verts[1][1], verts[1][2], verts[3][0], verts[3][1], verts[3][2])
    Szy_X = RodriguesRotate(Y, Sz_X[0], Sz_X[1], Sz_X[2], Sz_Y[0], Sz_Y[1], Sz_Y[2])
    print("y轴经过z轴旋转后:", Sz_Y)
    print("x轴经过z轴旋转后:", Sz_X)
    print("x轴经过z轴和y轴旋转后:", Szy_X)

    # X轴,Y轴经旋转顺序后的初始向量坐标
    # 严格按照z-y-x旋转顺序进行计算
    verts_z = [RodriguesRotate(Z, vert[0], vert[1], vert[2], verts[3][0], verts[3][1], verts[3][2]) for vert in verts]
    verts_zy = [RodriguesRotate(Y, vert[0], vert[1], vert[2], Sz_Y[0], Sz_Y[1], Sz_Y[2]) for vert in verts_z]
    verts_zyx = [RodriguesRotate(X, vert[0], vert[1], vert[2], Szy_X[0], Szy_X[1], Szy_X[2]) for vert in verts_zy]

    # 旋转后的三维坐标系的各个点组成的三个面
    xoy1 = [verts_zyx[0] + verts_zyx[1] + verts_zyx[2]]
    xoz1 = [verts_zyx[0] + verts_zyx[1] + verts_zyx[3]]
    yoz1 = [verts_zyx[0] + verts_zyx[2] + verts_zyx[3]]

    # 旋转后三维坐标系中三个平面的法向量
    normal_vector_xoy = [normal_vector(vert[0], vert[1], vert[2], vert[3], vert[4], vert[5], vert[6], vert[7], vert[8])
                         for vert in xoy1]
    normal_vector_xoz = [normal_vector(vert[0], vert[1], vert[2], vert[3], vert[4], vert[5], vert[6], vert[7], vert[8])
                         for vert in xoz1]
    normal_vector_yoz = [normal_vector(vert[0], vert[1], vert[2], vert[3], vert[4], vert[5], vert[6], vert[7], vert[8])
                         for vert in yoz1]

    # 法向量与初始xoy平面法向量(oz向量)夹角
    # 两平面法向量夹角就是面面角
    dihedral_angle_xoy = [dihedral_angle(vert[0], vert[1], vert[2]) for vert in normal_vector_xoy]
    dihedral_angle_xoz = [dihedral_angle(vert[0], vert[1], vert[2]) for vert in normal_vector_xoz]
    dihedral_angle_yoz = [dihedral_angle(vert[0], vert[1], vert[2]) for vert in normal_vector_yoz]
    print("旋转后三维坐标系中的xoy平面与初始xoy平面夹角:", dihedral_angle_xoy)
    print("旋转后三维坐标系中的xoz平面与初始xoy平面夹角:", dihedral_angle_xoz)
    print("旋转后三维坐标系中的yoz平面与初始xoy平面夹角:", dihedral_angle_yoz)

test(45,45,45) # 参数为欧拉角x,欧拉角y,欧拉角z

运行结果

y轴经过z轴旋转后: (-0.7071067811865476, 0.7071067811865476, 0.0)
x轴经过z轴旋转后: (0.7071067811865476, 0.7071067811865476, 0.0)
x轴经过z轴和y轴旋转后: (0.5000000000000001, 0.5000000000000001, -0.7071067811865477)
旋转后三维坐标系中的xoy平面与初始xoy平面夹角: [60.00000000000001]
旋转后三维坐标系中的xoz平面与初始xoy平面夹角: [120.00000000000001]
旋转后三维坐标系中的yoz平面与初始xoy平面夹角: [135.0]

内旋算法参考:https://blog.csdn.net/weixin_49861340/article/details/131106922

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_49861340/article/details/131093279

智能推荐

【MySQL】mysql The server time zone value “乱码” 错误_the server time zone value 乱码-程序员宅基地

文章浏览阅读7.8k次。稚语希听– 你忘了想起,我忘了忘记…mysql8以上版本时区问题:The server time zone value乱码XXXX异常类似:The server time zone value ‘�й���׼ʱ��’ is unrecognized or represents more than one time zone. You must configure either the server or JDBC driver (via the serverTimezone configuratio_the server time zone value 乱码

【WebApi】————.net WebApi开发(一)_webapi .net-程序员宅基地

文章浏览阅读8.5k次。【1】.部署环境.net4及以上版本。【2】.vs2010 开发需单独安装vs2010 sp1和mvc4mvc4:http://www.asp.net/mvc/mvc4【3】.开发1.新建项目选择ASP.net MVC 4 Web应用程序2.选择Web API 3.在新建立的项目里面有已经生成的webapi模版其中App_Start文件夹下WebApiCo..._webapi .net

几招教你阻止百度搜索自动跳转百度APP(其他网站也适用)!_百度自动跳转app怎么解决-程序员宅基地

文章浏览阅读10w+次,点赞15次,收藏33次。最近阿虚看到个消息说「百度」发布了新政策,禁止网站通过搜索引擎打开后折叠内容强迫下载APP客户端听起来似乎是百度难得良心一回?但实际上该政策仅限于手机百度APP内如果你是通过浏览器用百度搜索则与新政策完全没关系正好前不久不少粉丝来问过我这样一个问题:怎么屏蔽手机浏览器上的「跳转某某APP打开查看」提示那今天阿虚就来教一下怎么解决吧,毕竟这东西的确是有点烦人…屏蔽「跳转某某APP打开查看」这个问题我细看了下,还得分俩类:文章只能显示部分,然后提示你需要安装APP才能查看的,这种应该是大_百度自动跳转app怎么解决

PHP快速入门12-异常处理,自定义异常、抛出异常、断言异常等示例_php 抛出异常-程序员宅基地

文章浏览阅读843次。PHP的异常处理机制可以帮助我们在程序运行时遇到错误或异常情况时,及时发出警告并停止程序继续运行。下面是10个例子,分别展示了PHP异常处理的不同用法。_php 抛出异常

linux 清空docker容器日志_linux清理docker容器log-程序员宅基地

文章浏览阅读221次。【代码】linux 清空docker容器日志。_linux清理docker容器log

青岛大学开源OJ平台搭建_github oj开源-程序员宅基地

文章浏览阅读7.3k次,点赞3次,收藏15次。源码地址为:https://github.com/QingdaoU/OnlineJudge可参考的文档为:https://github.com/QingdaoU/OnlineJudgeDeploy/tree/2.0一、安装所依赖的环境sudo apt-get update && sudo apt-get install -y vim python-pip curl g..._github oj开源

随便推点

docker安装及部署mysql_docker部署mysql-程序员宅基地

文章浏览阅读1.5k次,点赞2次,收藏9次。docker安装与mysql部署_docker部署mysql

联想笔记本G510升级固态硬盘(SSD)血泪教程!!!_联想g510更换固态硬盘-程序员宅基地

文章浏览阅读8.5w次,点赞23次,收藏55次。#联想笔记本G510升级固态硬盘(SSD)血泪教程!!!用了5年的联想笔记本G510,经过了四年的游戏历程,然后四年后还老当益壮的挣扎在我工作的战斗一线,是我并肩作战多年,比兄弟还要亲的兄弟,虽然此时已经身躯残破,反应迟缓我依旧不舍得抛弃它(主要是没钱!)然后为了我个人的用户体验决定花少量的票子,让它多挣扎一会,最好是能坚持到我度过贫困期. 下面是我升级的悲催历程! - 首先为了提升运行速..._联想g510更换固态硬盘

问题记录——正则表达式匹配控制符_正则表达式匹配控制字符-程序员宅基地

文章浏览阅读910次。问题前端用xterm.js通过websocket连接docker虚拟终端,返回的字符中包括如下字符串,其中有两个控制字符,“ESC"和"BEL” ,想通过正则表达式匹配这一段字符,然后去掉这段字符:参考文档控制字符编码表转义符对照表通过上面查询得知,"ESC"和"BEL"这两个控制符的ASCII码分别为:十进制为27和7,十六进制为0x1B和0x07,转义符分别为:\e和\a代码**注意:**直接使用ASCII码匹配是不行的,一定要用转义符才行。如下测试代码中,只有regex3才能匹_正则表达式匹配控制字符

Android RIL框架分析-程序员宅基地

文章浏览阅读1.5k次。1.RIL框架 RIL,Radio Interface Layer。本层为一个协议转换层,提供Android Telephony与无线通信设备之间的抽象层。 Android RIL位于Telephony Frameworks之下,Modem之上的,根据源码,RIL可以分为两个部分:Frameworks 框架层中的java程序,简称RILJ。HAL层中C/C++程序,简称RILC,RILC具体的又包括LibRIL、Rild和Reference-RIL这三个部分。 Andr..._ril框架

Python编程基础:第六节 math包的基础使用Math Functions_ps math function-程序员宅基地

文章浏览阅读565次。第六节 math包的基础使用前言实践前言我们通常会对数值型变量进行计算,这里我们给出一些常用的函数用于辅助你的计算过程。常用的数学计算函数均在math包。实践首先我们导入math包,并定义一个浮点型变量pi将其赋值为3.14:import mathpi = 3.14如果我们需要计算浮点型变量四舍五入后的计算结果,用函数round()即可:print(round(pi))>>> 3如果我们需要向上取整,那就需要函数math.ceil():print(math.cei_ps math function

canal异常 Could not find first log file name in binary log index file_canal could not find first log file name in binary-程序员宅基地

文章浏览阅读4.4k次,点赞3次,收藏2次。Could not find first log file name in binary log index file问题解决解决过程问题最近在使用canal来监测数据库的变化,处理变动的数据。由于有一段时间没有用了,这次启动在日志文件中看到这个异常 Could not find first log file name in binary log index file,详细信息如下:2020-12-16 19:14:42.053 [destination = tradeAndRefund , addr_canal could not find first log file name in binary log index file