如何理解最小二乘法?-程序员宅基地

技术标签: 统计与概率  最小二乘法  人工智能  

最小平方法是十九世纪统计学的主题曲。 从许多方面来看, 它之于统计学就相当于十八世纪的微积分之于数学。

----乔治·斯蒂格勒的《The History of Statistics》

1 日用而不知

来看一个生活中的例子。比如说,有五把尺子:

用它们来分别测量一线段的长度,得到的数值分别为(颜色指不同的尺子):

\begin{array}{c|c} \qquad\qquad&\qquad长度\qquad\\\hline \color{red}红& 10.2 \\\hline \color{blue}蓝& 10.3 \\\hline \color{orange}橙&9.8\\\hline \color{Goldenrod}黄&9.9\\\hline \color{green}绿&9.8\\\end{array}

之所以出现不同的值可能因为:

  • 不同厂家的尺子的生产精度不同

  • 尺子材质不同,热胀冷缩不一样

  • 测量的时候心情起伏不定

  • ......

总之就是有误差,这种情况下,一般取平均值来作为线段的长度:

\overline{x}=\frac{10.2+10.3+9.8+9.9+9.8}{5}=10

日常中就是这么使用的。可是作为很事'er的数学爱好者,自然要想下:

  • 这样做有道理吗?

  • 用调和平均数行不行?

  • 用中位数行不行?

  • 用几何平均数行不行?

2 最小二乘法

换一种思路来思考刚才的问题。

首先,把测试得到的值画在笛卡尔坐标系中,分别记作y_i :

其次,把要猜测的线段长度的真实值用平行于横轴的直线来表示(因为是猜测的,所以用虚线来画),记作y :

每个点都向y 做垂线,垂线的长度就是|y-y_i| ,也可以理解为测量值和真实值之间的误差:

因为误差是长度,还要取绝对值,计算起来麻烦,就干脆用平方来代表误差:

|y-y_i|\to (y-y_i)^2

总的误差的平方就是:

\epsilon=\sum (y-y_i)^2

因为y 是猜测的,所以可以不断变换:

自然,总的误差\epsilon 也是在不断变化的。

法国数学家,阿德里安-馬里·勒讓德(1752-1833,这个头像有点抽象)提出让总的误差的平方最小的y 就是真值,这是基于,如果误差是随机的,应该围绕真值上下波动(关于这点可以看下“如何理解无偏估计?”)。

这就是最小二乘法,即:

\epsilon=\sum (y-y_i)^2最小\implies 真值y

这个猜想也蛮符合直觉的,来算一下。

这是一个二次函数,对其求导,导数为0的时候取得最小值:

\begin{aligned}    \frac{d}{dy}\epsilon        &=\frac{d}{dy}\sum (y-y_i)^2=2\sum (y-y_i)\\        \quad\\        &=2((y-y_1)+(y-y_2)+(y-y_3)+(y-y_4)+(y-y_5))=0        \quad\\\end{aligned}

进而:

5y=y_1+y_2+y_3+y_4+y_5\implies y=\frac{y_1+y_2+y_3+y_4+y_5}{5}

正好是算术平均数。

原来算术平均数可以让误差最小啊,这下看来选用它显得讲道理了。

以下这种方法:

\epsilon=\sum (y-y_i)^2最小\implies 真值y

就是最小二乘法,所谓“二乘”就是平方的意思,台湾直接翻译为最小平方法。

3 推广

算术平均数只是最小二乘法的特例,适用范围比较狭窄。而最小二乘法用途就广泛。

比如温度与冰淇淋的销量:

\begin{array}{c|c} \qquad\qquad&\qquad销量\qquad\\\hline \color{red}{25^\circ}& 110 \\\hline \color{blue}{27^\circ}& 115 \\\hline \color{orange}{31^\circ}&155\\\hline \color{Goldenrod}{33^\circ}&160\\\hline \color{green}{35^\circ}&180\\\end{array}

看上去像是某种线性关系:

可以假设这种线性关系为:

f(x)=ax+b

通过最小二乘法的思想:

上图的i,x,y 分别为:

\begin{array}{c|c|c} \qquad i\qquad&\qquad x\qquad&\qquad y\qquad\\\hline 1&25& 110 \\\hline 2&27& 115 \\\hline 3&31&155\\\hline 4&33&160\\\hline 5&35&180\\\end{array}

总误差的平方为:

\epsilon=\sum (f(x_i)-y_i)^2=\sum (ax_i+b-y_i)^2

不同的a,b 会导致不同的\epsilon ,根据多元微积分的知识,当:

\begin{cases}    \frac{\partial}{\partial a}\epsilon=2\sum (ax_i+b-y_i)x_i=0\\    \quad\\    \frac{\partial}{\partial b}\epsilon=2\sum (ax_i+b-y_i)=0\end{cases}

这个时候\epsilon 取最小值。

对于a,b 而言,上述方程组为线性方程组,用之前的数据解出来:

\begin{cases}    a\approx 7.2\\    \quad\\    b\approx -73\end{cases}

也就是这根直线:

其实,还可以假设:

f(x)=ax^2+bx+c

在这个假设下,可以根据最小二乘法,算出a,b,c ,得到下面这根红色的二次曲线:

同一组数据,选择不同的f(x) ,通过最小二乘法可以得到不一样的拟合曲线(出处):

不同的数据,更可以选择不同的f(x) ,通过最小二乘法可以得到不一样的拟合曲线:

f(x) 也不能选择任意的函数,还是有一些讲究的,这里就不介绍了。

4 最小二乘法与正态分布

我们对勒让德的猜测,即最小二乘法,仍然抱有怀疑,万一这个猜测是错误的怎么办?

数学王子高斯(1777-1855)也像我们一样心存怀疑。

高斯换了一个思考框架,通过概率统计那一套来思考。

让我们回到最初测量线段长度的问题。高斯想,通过测量得到了这些值:

\begin{array}{c|c} \qquad\qquad&\qquad长度\qquad\\\hline \color{red}红& 10.2 \\\hline \color{blue}蓝& 10.3 \\\hline \color{orange}橙&9.8\\\hline \color{Goldenrod}黄&9.9\\\hline \color{green}绿&9.8\\\end{array}

每次的测量值x_i 都和线段长度的真值x 之间存在一个误差:

\epsilon_i=x-x_i

这些误差最终会形成一个概率分布,只是现在不知道误差的概率分布是什么。假设概率密度函数为:

p(\epsilon)

再假设一个联合概率密度函数,这样方便把所有的测量数据利用起来:

\begin{aligned}    L(x)        &=p(\epsilon_1)p(\epsilon_2)\cdots p(\epsilon_5)\\        \quad\\        &=p(x-x_i)p(x-x_2)\cdots p(x-x_5)\end{aligned}

讲到这里,有些同学可能已经看出来了上面似然函数了(关于似然函数以及马上要讲到的极大似然估计,可以参考“如何理解极大似然估计法?”)。

因为L(x) 是关于x 的函数,并且也是一个概率密度函数(下面分布图形是随便画的):

根据极大似然估计的思想,概率最大的最应该出现(既然都出现了,而我又不是“天选之才”,那么自然不会是发生了小概率事件),也就是应该取到下面这点:

当下面这个式子成立时,取得最大值:

\frac{d}{dx}L(x)=0

然后高斯想,最小二乘法给出的答案是:

x=\overline{x}=\frac{x_1+x_2+x_3+x_4+x_5}{5}

如果最小二乘法是对的,那么x=\overline{x} 时应该取得最大值,即:

\frac{d}{dx}L(x)|_{x=\overline{x}}=0

好,现在可以来解这个微分方程了。最终得到:

p(\epsilon)={1 \over \sigma\sqrt{2\pi} }\,e^{- {​{\epsilon^2 \over 2\sigma^2}}}

这是什么?这就是正态分布啊。

并且这还是一个充要条件:

x=\overline{x}\iff p(\epsilon)={1 \over \sigma\sqrt{2\pi} }\,e^{- {​{\epsilon^2 \over 2\sigma^2}}}

也就是说,如果误差的分布是正态分布,那么最小二乘法得到的就是最有可能的值。

那么误差的分布是正态分布吗?

我们相信,误差是由于随机的、无数的、独立的、多个因素造成的,比如之前提到的:

  • 不同厂家的尺子的生产精度不同

  • 尺子材质不同,热胀冷缩不一样

  • 测量的时候心情起伏不定

  • ......

那么根据中心极限定理(参考“为什么正态分布如此常见?”),误差的分布就应该是正态分布。

因为高斯的努力,才真正奠定了最小二乘法的重要地位。

文章最新版本在(有可能会有后续更新):如何理解最小二乘法?

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ccnt_2012/article/details/81127117

智能推荐

Linux查看登录用户日志_怎么记录linux设备 发声的登录和登出-程序员宅基地

文章浏览阅读8.6k次。一、Linux记录用户登录信息文件1  /var/run/utmp----记录当前正在登录系统的用户信息;2  /var/log/wtmp----记录当前正在登录和历史登录系统的用户信息;3  /var/log/btmp:记录失败的登录尝试信息。二、命令用法1.命令last,lastb---show a listing of la_怎么记录linux设备 发声的登录和登出

第四章笔记:遍历--算法学中的万能钥匙-程序员宅基地

文章浏览阅读167次。摘要:1. 简介 2. 公园迷宫漫步 3. 无线迷宫与最短(不加权)路径问题 4. 强连通分量1. 简介在计算机科学裡,树的遍历(也称为树的搜索)是圖的遍歷的一种,指的是按照某种规则,不重复地访问某种樹的所有节点的过程。具体的访问操作可能是检查节点的值、更新节点的值等。不同的遍历方式,其访问节点的顺序是不一样的。两种著名的基本遍历策略:深度优先搜索(DFS) 和 广度优先搜索(B...

【案例分享】使用ActiveReports报表工具,在.NET MVC模式下动态创建报表_activereports.net 实现查询报表功能-程序员宅基地

文章浏览阅读591次。提起报表,大家会觉得即熟悉又陌生,好像常常在工作中使用,又似乎无法准确描述报表。今天我们来一起了解一下什么是报表,报表的结构、构成元素,以及为什么需要报表。什么是报表简单的说:报表就是通过表格、图表等形式来动态显示数据,并为使用者提供浏览、打印、导出和分析的功能,可以用公式表示为:报表 = 多样的布局 + 动态的数据 + 丰富的输出报表通常包含以下组成部分:报表首页:在报表的开..._activereports.net 实现查询报表功能

Ubuntu18.04 + GNOME xrdp + Docker + GUI_docker xrdp ubuntu-程序员宅基地

文章浏览阅读6.6k次。最近实验室需要用Cadence,这个软件的安装非常麻烦,每一次配置都要几个小时,因此打算把Cadence装进Docker。但是Cadence运行时需要GUI,要对Docker进行一些配置。我们实验室的服务器运行的是Ubuntu18.04,默认桌面GNOME,Cadence装进Centos的Docker。安装Ubuntu18.04服务器上安装Ubuntu18.04的教程非常多,在此不赘述了安装..._docker xrdp ubuntu

iOS AVFoundation实现相机功能_ios avcapturestillimageoutput 兼容性 ios17 崩溃-程序员宅基地

文章浏览阅读1.8k次,点赞2次,收藏2次。首先导入头文件#import 导入头文件后创建几个相机必须实现的对象 /** * AVCaptureSession对象来执行输入设备和输出设备之间的数据传递 */ @property (nonatomic, strong) AVCaptureSession* session; /** * 输入设备 */_ios avcapturestillimageoutput 兼容性 ios17 崩溃

Oracle动态性能视图--v$sysstat_oracle v$sysstat视图-程序员宅基地

文章浏览阅读982次。按照OracleDocument中的描述,v$sysstat存储自数据库实例运行那刻起就开始累计全实例(instance-wide)的资源使用情况。 类似于v$sesstat,该视图存储下列的统计信息:1>.事件发生次数的统计(如:user commits)2>._oracle v$sysstat视图

随便推点

Vue router报错:NavigationDuplicated {_name: "NavigationDuplicated", name: "NavigationDuplicated"}的解决方法_navigationduplicated {_name: 'navigationduplicated-程序员宅基地

文章浏览阅读7.6k次,点赞2次,收藏9次。我最近做SPA项目开发动态树的时候一直遇到以下错误:当我点击文章管理需要跳转路径时一直报NavigationDuplicated {_name: “NavigationDuplicated”, name: “NavigationDuplicated”}这个错误但是当我点击文章管理后,路径跳转却是成功的<template> <div> 文章管理页面 <..._navigationduplicated {_name: 'navigationduplicated', name: 'navigationduplic

Webrtc回声消除模式(Aecm)屏蔽舒适噪音(CNG)_webrtc aecm 杂音-程序员宅基地

文章浏览阅读3.9k次。版本VoiceEngine 4.1.0舒适噪音生成(comfort noise generator,CNG)是一个在通话过程中出现短暂静音时用来为电话通信产生背景噪声的程序。#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)static const EcModes kDefaultEcMode = kEcAecm;#elsestati..._webrtc aecm 杂音

医学成像原理与图像处理一:概论_医学成像与图像处理技术知识点总结-程序员宅基地

文章浏览阅读6.3k次,点赞9次,收藏19次。医学成像原理与图像处理一:概论引言:本系列博客为医学成像原理与图像处理重要笔记,由于是手写,在此通过扫描录入以图片的形式和电子版增补内容将其进行组织和共享。前半部分内容为图像处理基础内容,包括图像的灰度级处理、空间域滤波、频率域滤波、图像增强和分割等;后半部分内容为医学影象技术,包括常规胶片X光机、CR、DR、CT、DSA等X射线摄影技术、超声成像技术、磁共振成像(MRI)技术等。本篇主要内容是概论。_医学成像与图像处理技术知识点总结

notepad++ v8.5.3 安装插件,安装失败怎么处理?下载进度为0怎么处理?_nodepa++-程序员宅基地

文章浏览阅读591次,点赞13次,收藏10次。notepad++ v8.5.3 安装插件,下载进度为0_nodepa++

hive某个字段中包括\n(和换行符冲突)_hive sql \n-程序员宅基地

文章浏览阅读2.1w次。用spark执行SQL保存到Hive中: hiveContext.sql(&quot;insert overwrite table test select * from aaa&quot;)执行完成,没报错,但是核对结果的时候,发现有几笔数据超出指定范围(实际只包含100/200)最终排查到是ret_pay_remark 字段包含换行符,解决方案:执行SQL中把特殊字符替换掉regexp_replace(..._hive sql \n

印象笔记05:如何打造更美的印象笔记超级笔记_好的印象笔记怎么做的-程序员宅基地

文章浏览阅读520次,点赞10次,收藏8次。印象笔记05:如何打造更美的印象笔记超级笔记本文介绍印象笔记的具体使用,如何打造更美更实用的笔记。首先想要笔记更加好看和实用,我认为要使用超级笔记。所谓超级笔记就是具有很多便捷功能的笔记。_好的印象笔记怎么做的

推荐文章

热门文章

相关标签