跟着官方文档学DGL框架第十四天——大型图上的随机训练之链接预测_dgl negative_sampler-程序员宅基地

技术标签: 图神经网络  深度学习  DGL  pytorch  链接预测  

参考资料

  1. https://docs.dgl.ai/en/latest/guide/minibatch-link.html#guide-minibatch-link-classification-sampler
  2. http://www.voidcn.com/article/p-fsdktdik-bry.html

概述

关于链接预测的概念和优化方法在“跟着官方文档学DGL框架第十天”上已经提到过。我们的目标还是得到节点表示,所以在随机训练时与节点分类和边分类的随机训练差不多,只是多了负采样过程。值得庆幸的是,DGL在随机训练时的负采样,只需要指定dgl.dataloading.EdgeDataLoader()中的negative_sampler为你需要的负采样函数。

随机训练之同构图上的链接预测

加载数据

依然使用“跟着官方文档学DGL框架第八天”中定义的DGLDataset类型的数据集。随机为每条边打上了标签,并随机选择了100条边作为训练集。

def build_karate_club_graph():
    # All 78 edges are stored in two numpy arrays. One for source endpoints
    # while the other for destination endpoints.
    src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
        10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
        25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
        32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
        33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
    dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
        5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
        24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
        29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
        31, 32])
    # Edges are directional in DGL; Make them bi-directional.
    u = np.concatenate([src, dst])
    v = np.concatenate([dst, src])
    # Construct a DGLGraph
    return dgl.graph((u, v))

class MyDataset(DGLDataset):
    def __init__(self,
                 url=None,
                 raw_dir=None,
                 save_dir=None,
                 force_reload=False,
                 verbose=False):
        super(MyDataset, self).__init__(name='dataset_name',
                                        url=url,
                                        raw_dir=raw_dir,
                                        save_dir=save_dir,
                                        force_reload=force_reload,
                                        verbose=verbose)

    def process(self):
        # 跳过一些处理的代码
        # === 跳过数据处理 ===

        # 构建图
        # g = dgl.graph(G)
        g = build_karate_club_graph()

        # train_mask = _sample_mask(idx_train, g.number_of_nodes())
        # val_mask = _sample_mask(idx_val, g.number_of_nodes())
        # test_mask = _sample_mask(idx_test, g.number_of_nodes())

        # # 划分掩码
        # g.ndata['train_mask'] = generate_mask_tensor(train_mask)
        # g.ndata['val_mask'] = generate_mask_tensor(val_mask)
        # g.ndata['test_mask'] = generate_mask_tensor(test_mask)

        # 节点的标签
        labels = torch.randint(0, 2, (g.number_of_edges(),))
        g.edata['labels'] = torch.tensor(labels)

        # 节点的特征
        g.ndata['features'] = torch.randn(g.number_of_nodes(), 10)
        self._num_labels = int(torch.max(labels).item() + 1)
        self._labels = labels
        self._g = g

    def __getitem__(self, idx):
        assert idx == 0, "这个数据集里只有一个图"
        return self._g

    def __len__(self):
        return 1

dataset = MyDataset()
g = dataset[0]
n_edges = g.number_of_edges()
train_seeds = np.random.choice(np.arange(n_edges), (20,), replace=False)

定义邻居采样器

依然选择最简单的采样器:

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

负采样时有两种方式,一是使用DGL自带的随机采样,二是自定义负采样函数。

随机采样

随机采样只需要指定“negative_sampler=dgl.dataloading.negative_sampler.Uniform(5)”,其中“5”表示负样本个数。

“drop_last”和“pin_memory”参数来自torch.data.DataLoader。“drop_last”表示是否去除最后一个不完整的batch;“pin_memory”表示是否使用锁页内存,建议在使用GPU时设置为True。

dataloader会返回“输入节点”、“正样本图”、“负采样图”和“子图块”四个结果。

dataloader = dgl.dataloading.EdgeDataLoader(
    g, train_seeds, sampler,
    negative_sampler=dgl.dataloading.negative_sampler.Uniform(5),
    batch_size=4,
    shuffle=True,
    drop_last=False,
    pin_memory=True,
    num_workers=False)
自定义负采样函数

负采样函数初始化的参数为:1.原始图“g”;2.一个正样本对应的负样本个数“k”。函数的输入为原始图“g”和小批量的边id“eids”,返回的结果是负样本的源节点数组和目标节点数组。

下面是按原始图中节点度的0.75次幂为采样率的例子。

class NegativeSampler(object):
    def __init__(self, g, k):
        # caches the probability distribution
        self.weights = g.in_degrees().float() ** 0.75
        self.k = k

    def __call__(self, g, eids):
        src, _ = g.find_edges(eids)
        src = src.repeat_interleave(self.k)
        dst = self.weights.multinomial(len(src), replacement=True)
        return src, dst

dataloader = dgl.dataloading.EdgeDataLoader(
    g, train_seeds, sampler,
    negative_sampler=NegativeSampler(g, 5),
    batch_size=4,
    shuffle=True,
    drop_last=False,
    pin_memory=True,
    num_workers=False)

获取节点表示

与节点分类的随机训练使用一样的模型:

class StochasticTwoLayerGCN(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super().__init__()
        self.conv1 = dglnn.GraphConv(in_features, hidden_features)
        self.conv2 = dglnn.GraphConv(hidden_features, out_features)

    def forward(self, blocks, x):
        x = F.relu(self.conv1(blocks[0], x))
        x = F.relu(self.conv2(blocks[1], x))
        return x

预测边的得分

这里使用边的两个端点的内积作为分数:

class ScorePredictor(nn.Module):
    def forward(self, edge_subgraph, x):
        with edge_subgraph.local_scope():
            edge_subgraph.ndata['x'] = x
            edge_subgraph.apply_edges(dgl.function.u_dot_v('x', 'x', 'score'))
            return edge_subgraph.edata['score']

整体模型

首先获得节点的表示,然后分别计算正样本图和负采样图上的边得分。

class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super().__init__()
        self.gcn = StochasticTwoLayerGCN(
            in_features, hidden_features, out_features)
        self.predictor = ScorePredictor()

    def forward(self, positive_graph, negative_graph, blocks, x):
        x = self.gcn(blocks, x)
        pos_score = self.predictor(positive_graph, x)
        neg_score = self.predictor(negative_graph, x)
        return pos_score, neg_score

开始训练

使用hinge loss作为损失函数。

def compute_loss(pos_score, neg_score):
    # an example hinge loss
    n = pos_score.shape[0]
    return (neg_score.view(n, -1) - pos_score.view(n, -1) + 1).clamp(min=0).mean()

opt = torch.optim.Adam(model.parameters())

for input_nodes, positive_graph, negative_graph, blocks in dataloader:
    input_features = blocks[0].srcdata['features']
    pos_score, neg_score = model(positive_graph, negative_graph, blocks, input_features)
    loss = compute_loss(pos_score, neg_score)
    opt.zero_grad()
    loss.backward()
    print('loss: ', loss.item())
    opt.step()

随机训练之异构图上的链接预测

加载数据

还是使用“跟着官方文档学DGL框架第八天”中人工构建的异构图数据集。训练集选择了所有类型的所有边,以字典的形式给出。

n_users = 1000
n_items = 500
n_follows = 3000
n_clicks = 5000
n_dislikes = 500
n_hetero_features = 10
n_user_classes = 5
n_max_clicks = 10

follow_src = np.random.randint(0, n_users, n_follows)
follow_dst = np.random.randint(0, n_users, n_follows)
click_src = np.random.randint(0, n_users, n_clicks)
click_dst = np.random.randint(0, n_items, n_clicks)
dislike_src = np.random.randint(0, n_users, n_dislikes)
dislike_dst = np.random.randint(0, n_items, n_dislikes)

hetero_graph = dgl.heterograph({
    
    ('user', 'follow', 'user'): (follow_src, follow_dst),
    ('user', 'followed-by', 'user'): (follow_dst, follow_src),
    ('user', 'click', 'item'): (click_src, click_dst),
    ('item', 'clicked-by', 'user'): (click_dst, click_src),
    ('user', 'dislike', 'item'): (dislike_src, dislike_dst),
    ('item', 'disliked-by', 'user'): (dislike_dst, dislike_src)})

hetero_graph.nodes['user'].data['feat'] = torch.randn(n_users, n_hetero_features)
hetero_graph.nodes['item'].data['feat'] = torch.randn(n_items, n_hetero_features)

g = hetero_graph

train_eid_dict = {
    
    etype: g.edges(etype=etype, form='eid')
    for etype in g.etypes}

定义邻居采样器

依然选择最简单的采样器:

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

负采样时有两种方式,一是使用DGL自带的随机采样,二是自定义负采样函数。

随机采样

与同构图时无异,dgl.dataloading.negative_sampler.Uniform()同样支持异构图。

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

dataloader = dgl.dataloading.EdgeDataLoader(
    g, train_eid_dict, sampler,
    negative_sampler=dgl.dataloading.negative_sampler.Uniform(5),
    batch_size=10,
    shuffle=True,
    drop_last=False,
    num_workers=False)
自定义负采样函数

这个还没有调通,之后再来调。[flag]

class NegativeSampler(object):
    def __init__(self, g, k):
        # 缓存概率分布
        self.weights = {
    
            etype: g.in_degrees(etype=etype).float() ** 0.75
            for _, etype, _ in g.canonical_etypes
        }
        self.k = k

    def __call__(self, g, eids_dict):
        result_dict = {
    }
        for etype, eids in eids_dict.items():
            src, _ = g.find_edges(eids, etype=etype)
            src = src.repeat_interleave(self.k)
            dst = self.weights[etype].multinomial(len(src), replacement=True)
            result_dict[etype] = (src, dst)
        return result_dict

获取节点表示

与节点分类的随机训练使用一样的模型:

class StochasticTwoLayerRGCN(nn.Module):
    def __init__(self, in_feat, hidden_feat, out_feat, rel_names):
        super().__init__()
        self.conv1 = dglnn.HeteroGraphConv({
    
                rel : dglnn.GraphConv(in_feat, hidden_feat, norm='right')
                for rel in rel_names
            })
        self.conv2 = dglnn.HeteroGraphConv({
    
                rel : dglnn.GraphConv(hidden_feat, out_feat, norm='right')
                for rel in rel_names
            })

    def forward(self, blocks, x):
        x = self.conv1(blocks[0], x)
        x = self.conv2(blocks[1], x)
        return x

预测边的得分

这里使用边的两个端点的内积作为分数,与同构图的区别在于,需要分边类型执行apply_edges():

class ScorePredictor(nn.Module):
    def forward(self, edge_subgraph, x):
        with edge_subgraph.local_scope():
            edge_subgraph.ndata['x'] = x
            for etype in edge_subgraph.canonical_etypes:
                edge_subgraph.apply_edges(
                    dgl.function.u_dot_v('x', 'x', 'score'), etype=etype)
            return edge_subgraph.edata['score']

整体模型

首先获得节点的表示,然后分别计算正样本图和负采样图上的边得分,注意返回的结果是字典形式,键是边类型,值是分数。

class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features, etypes):
        super().__init__()
        self.rgcn = StochasticTwoLayerRGCN(
            in_features, hidden_features, out_features, etypes)
        self.pred = ScorePredictor()

    def forward(self, positive_graph, negative_graph, blocks, x):
        x = self.rgcn(blocks, x)
        pos_score = self.pred(positive_graph, x)
        neg_score = self.pred(negative_graph, x)
        return pos_score, neg_score

开始训练

由于返回的分数结果是字典形式,所以需要自定义一个损失函数,这里对每种边类型分别使用hinge loss,再求和作为最终损失。

def compute_loss(pos_score, neg_score):
    loss = 0
    # an example hinge loss
    for etype, p_score in pos_score.items():
        if len(p_score) != 0:
            n = p_score.shape[0]
            loss += (neg_score[etype].view(n, -1) - p_score.view(n, -1) + 1).clamp(min=0).mean()
        
    return loss

in_features = n_hetero_features
hidden_features = 100
out_features = 10
etypes = g.etypes

model = Model(in_features, hidden_features, out_features, etypes)

opt = torch.optim.Adam(model.parameters())

for input_nodes, positive_graph, negative_graph, blocks in dataloader:
    print('negative graph: ', negative_graph)
    input_features = blocks[0].srcdata['feat']
    pos_score, neg_score = model(positive_graph, negative_graph, blocks, input_features)
    loss = compute_loss(pos_score, neg_score)
    opt.zero_grad()
    loss.backward()
    print('loss: ', loss.item())
    opt.step()

完整代码

随机训练之同构图上的链接预测

import dgl
import dgl.nn as dglnn
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from dgl.data.utils import generate_mask_tensor
from dgl.data import DGLDataset
import torch

def build_karate_club_graph():
    # All 78 edges are stored in two numpy arrays. One for source endpoints
    # while the other for destination endpoints.
    src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
        10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
        25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
        32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
        33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
    dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
        5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
        24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
        29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
        31, 32])
    # Edges are directional in DGL; Make them bi-directional.
    u = np.concatenate([src, dst])
    v = np.concatenate([dst, src])
    # Construct a DGLGraph
    return dgl.graph((u, v))

# def _sample_mask(idx, l):
#     """Create mask."""
#     mask = np.zeros(l)
#     mask[idx] = 1
#     return mask

class MyDataset(DGLDataset):
    def __init__(self,
                 url=None,
                 raw_dir=None,
                 save_dir=None,
                 force_reload=False,
                 verbose=False):
        super(MyDataset, self).__init__(name='dataset_name',
                                        url=url,
                                        raw_dir=raw_dir,
                                        save_dir=save_dir,
                                        force_reload=force_reload,
                                        verbose=verbose)

    def process(self):
        # 跳过一些处理的代码
        # === 跳过数据处理 ===

        # 构建图
        # g = dgl.graph(G)
        g = build_karate_club_graph()

        # train_mask = _sample_mask(idx_train, g.number_of_nodes())
        # val_mask = _sample_mask(idx_val, g.number_of_nodes())
        # test_mask = _sample_mask(idx_test, g.number_of_nodes())

        # # 划分掩码
        # g.ndata['train_mask'] = generate_mask_tensor(train_mask)
        # g.ndata['val_mask'] = generate_mask_tensor(val_mask)
        # g.ndata['test_mask'] = generate_mask_tensor(test_mask)

        # 节点的标签
        labels = torch.randint(0, 2, (g.number_of_edges(),))
        g.edata['labels'] = torch.tensor(labels)

        # 节点的特征
        g.ndata['features'] = torch.randn(g.number_of_nodes(), 10)
        self._num_labels = int(torch.max(labels).item() + 1)
        self._labels = labels
        self._g = g

    def __getitem__(self, idx):
        assert idx == 0, "这个数据集里只有一个图"
        return self._g

    def __len__(self):
        return 1

dataset = MyDataset()
g = dataset[0]
n_edges = g.number_of_edges()
train_seeds = np.random.choice(np.arange(n_edges), (20,), replace=False)

sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

dataloader = dgl.dataloading.EdgeDataLoader(
    g, train_seeds, sampler,
    negative_sampler=dgl.dataloading.negative_sampler.Uniform(5),
    batch_size=4,
    shuffle=True,
    drop_last=False,
    pin_memory=True,
    num_workers=False)


# class NegativeSampler(object):
#     def __init__(self, g, k):
#         # caches the probability distribution
#         self.weights = g.in_degrees().float() ** 0.75
#         self.k = k

#     def __call__(self, g, eids):
#         src, _ = g.find_edges(eids)
#         src = src.repeat_interleave(self.k)
#         dst = self.weights.multinomial(len(src), replacement=True)
#         return src, dst

# dataloader = dgl.dataloading.EdgeDataLoader(
#     g, train_seeds, sampler,
#     negative_sampler=NegativeSampler(g, 5),
#     batch_size=4,
#     shuffle=True,
#     drop_last=False,
#     pin_memory=True,
#     num_workers=False)


class StochasticTwoLayerGCN(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super().__init__()
        self.conv1 = dgl.nn.GraphConv(in_features, hidden_features)
        self.conv2 = dgl.nn.GraphConv(hidden_features, out_features)

    def forward(self, blocks, x):
        x = F.relu(self.conv1(blocks[0], x))
        x = F.relu(self.conv2(blocks[1], x))
        return x


class ScorePredictor(nn.Module):
    def forward(self, edge_subgraph, x):
        with edge_subgraph.local_scope():
            edge_subgraph.ndata['x'] = x
            edge_subgraph.apply_edges(dgl.function.u_dot_v('x', 'x', 'score'))
            return edge_subgraph.edata['score']


class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features):
        super().__init__()
        self.gcn = StochasticTwoLayerGCN(
            in_features, hidden_features, out_features)
        self.predictor = ScorePredictor()

    def forward(self, positive_graph, negative_graph, blocks, x):
        x = self.gcn(blocks, x)
        pos_score = self.predictor(positive_graph, x)
        neg_score = self.predictor(negative_graph, x)
        return pos_score, neg_score

def compute_loss(pos_score, neg_score):
    # an example hinge loss
    n = pos_score.shape[0]
    return (neg_score.view(n, -1) - pos_score.view(n, -1) + 1).clamp(min=0).mean()

in_features = 10
hidden_features = 100
out_features = 10
model = Model(in_features, hidden_features, out_features)


# model = model.cuda()
# opt = torch.optim.Adam(model.parameters())

# for input_nodes, positive_graph, negative_graph, blocks in dataloader:
#     blocks = [b.to(torch.device('cuda')) for b in blocks]
#     positive_graph = positive_graph.to(torch.device('cuda'))
#     negative_graph = negative_graph.to(torch.device('cuda'))
#     input_features = blocks[0].srcdata['features']
#     pos_score, neg_score = model(positive_graph, negative_graph, blocks, input_features)
#     loss = compute_loss(pos_score, neg_score)
#     opt.zero_grad()
#     loss.backward()
#     opt.step()

opt = torch.optim.Adam(model.parameters())

for input_nodes, positive_graph, negative_graph, blocks in dataloader:
    input_features = blocks[0].srcdata['features']
    pos_score, neg_score = model(positive_graph, negative_graph, blocks, input_features)
    loss = compute_loss(pos_score, neg_score)
    opt.zero_grad()
    loss.backward()
    print('loss: ', loss.item())
    opt.step()

随机训练之异构图上的链接预测

import dgl
import dgl.nn as dglnn
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from dgl.data.utils import generate_mask_tensor
from dgl.data import DGLDataset
import torch

n_users = 1000
n_items = 500
n_follows = 3000
n_clicks = 5000
n_dislikes = 500
n_hetero_features = 10
n_user_classes = 5
n_max_clicks = 10

follow_src = np.random.randint(0, n_users, n_follows)
follow_dst = np.random.randint(0, n_users, n_follows)
click_src = np.random.randint(0, n_users, n_clicks)
click_dst = np.random.randint(0, n_items, n_clicks)
dislike_src = np.random.randint(0, n_users, n_dislikes)
dislike_dst = np.random.randint(0, n_items, n_dislikes)

hetero_graph = dgl.heterograph({
    
    ('user', 'follow', 'user'): (follow_src, follow_dst),
    ('user', 'followed-by', 'user'): (follow_dst, follow_src),
    ('user', 'click', 'item'): (click_src, click_dst),
    ('item', 'clicked-by', 'user'): (click_dst, click_src),
    ('user', 'dislike', 'item'): (dislike_src, dislike_dst),
    ('item', 'disliked-by', 'user'): (dislike_dst, dislike_src)})

hetero_graph.nodes['user'].data['feat'] = torch.randn(n_users, n_hetero_features)
hetero_graph.nodes['item'].data['feat'] = torch.randn(n_items, n_hetero_features)

g = hetero_graph

train_eid_dict = {
    
    etype: g.edges(etype=etype, form='eid')
    for etype in g.etypes}

class StochasticTwoLayerRGCN(nn.Module):
    def __init__(self, in_feat, hidden_feat, out_feat, rel_names):
        super().__init__()
        self.conv1 = dglnn.HeteroGraphConv({
    
                rel : dglnn.GraphConv(in_feat, hidden_feat, norm='right')
                for rel in rel_names
            })
        self.conv2 = dglnn.HeteroGraphConv({
    
                rel : dglnn.GraphConv(hidden_feat, out_feat, norm='right')
                for rel in rel_names
            })

    def forward(self, blocks, x):
        x = self.conv1(blocks[0], x)
        x = self.conv2(blocks[1], x)
        return x

class ScorePredictor(nn.Module):
    def forward(self, edge_subgraph, x):
        with edge_subgraph.local_scope():
            edge_subgraph.ndata['x'] = x
            for etype in edge_subgraph.canonical_etypes:
                edge_subgraph.apply_edges(
                    dgl.function.u_dot_v('x', 'x', 'score'), etype=etype)
            return edge_subgraph.edata['score']

class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features, etypes):
        super().__init__()
        self.rgcn = StochasticTwoLayerRGCN(
            in_features, hidden_features, out_features, etypes)
        self.pred = ScorePredictor()

    def forward(self, positive_graph, negative_graph, blocks, x):
        x = self.rgcn(blocks, x)
        pos_score = self.pred(positive_graph, x)
        neg_score = self.pred(negative_graph, x)
        return pos_score, neg_score


sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

dataloader = dgl.dataloading.EdgeDataLoader(
    g, train_eid_dict, sampler,
    negative_sampler=dgl.dataloading.negative_sampler.Uniform(5),
    batch_size=10,
    shuffle=True,
    drop_last=False,
    num_workers=False)

# class NegativeSampler(object):
#     def __init__(self, g, k):
#         # 缓存概率分布
#         self.weights = {
    
#             etype: g.in_degrees(etype=etype).float() ** 0.75
#             for _, etype, _ in g.canonical_etypes
#         }
#         self.k = k

#     def __call__(self, g, eids_dict):
#         result_dict = {}
#         for etype, eids in eids_dict.items():
#             print(etype)
#             src, _ = g.find_edges(eids, etype=etype)
#             src = src.repeat_interleave(self.k)
#             dst = self.weights[etype].multinomial(len(src), replacement=True)
#             result_dict[etype] = (src, dst)
#             print('len_dict: ', result_dict[etype])
#         return result_dict


# dataloader = dgl.dataloading.EdgeDataLoader(
#     g, train_eid_dict, sampler,
#     negative_sampler=NegativeSampler(g, 5),
#     batch_size=1000,
#     shuffle=True,
#     drop_last=False,
#     num_workers=False)

def compute_loss(pos_score, neg_score):
    loss = 0
    # an example hinge loss
    for etype, p_score in pos_score.items():
        if len(p_score) != 0:
            n = p_score.shape[0]
            loss += (neg_score[etype].view(n, -1) - p_score.view(n, -1) + 1).clamp(min=0).mean()
        
    return loss

in_features = n_hetero_features
hidden_features = 100
out_features = 10
etypes = g.etypes

model = Model(in_features, hidden_features, out_features, etypes)
# model = model.cuda()
# opt = torch.optim.Adam(model.parameters())

# for input_nodes, positive_graph, negative_graph, blocks in dataloader:
#     blocks = [b.to(torch.device('cuda')) for b in blocks]
#     positive_graph = positive_graph.to(torch.device('cuda'))
#     negative_graph = negative_graph.to(torch.device('cuda'))
#     input_features = blocks[0].srcdata['features']
#     pos_score, neg_score = model(positive_graph, negative_graph, blocks, input_features)
#     loss = compute_loss(pos_score, neg_score)
#     opt.zero_grad()
#     loss.backward()
#     print('loss: ', loss.item())
#     opt.step()

opt = torch.optim.Adam(model.parameters())

for input_nodes, positive_graph, negative_graph, blocks in dataloader:
    print('negative graph: ', negative_graph)
    input_features = blocks[0].srcdata['feat']
    pos_score, neg_score = model(positive_graph, negative_graph, blocks, input_features)
    loss = compute_loss(pos_score, neg_score)
    opt.zero_grad()
    loss.backward()
    print('loss: ', loss.item())
    opt.step()
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/beilizhang/article/details/112920112

智能推荐

c# 调用c++ lib静态库_c#调用lib-程序员宅基地

文章浏览阅读2w次,点赞7次,收藏51次。四个步骤1.创建C++ Win32项目动态库dll 2.在Win32项目动态库中添加 外部依赖项 lib头文件和lib库3.导出C接口4.c#调用c++动态库开始你的表演...①创建一个空白的解决方案,在解决方案中添加 Visual C++ , Win32 项目空白解决方案的创建:添加Visual C++ , Win32 项目这......_c#调用lib

deepin/ubuntu安装苹方字体-程序员宅基地

文章浏览阅读4.6k次。苹方字体是苹果系统上的黑体,挺好看的。注重颜值的网站都会使用,例如知乎:font-family: -apple-system, BlinkMacSystemFont, Helvetica Neue, PingFang SC, Microsoft YaHei, Source Han Sans SC, Noto Sans CJK SC, W..._ubuntu pingfang

html表单常见操作汇总_html表单的处理程序有那些-程序员宅基地

文章浏览阅读159次。表单表单概述表单标签表单域按钮控件demo表单标签表单标签基本语法结构<form action="处理数据程序的url地址“ method=”get|post“ name="表单名称”></form><!--action,当提交表单时,向何处发送表单中的数据,地址可以是相对地址也可以是绝对地址--><!--method将表单中的数据传送给服务器处理,get方式直接显示在url地址中,数据可以被缓存,且长度有限制;而post方式数据隐藏传输,_html表单的处理程序有那些

PHP设置谷歌验证器(Google Authenticator)实现操作二步验证_php otp 验证器-程序员宅基地

文章浏览阅读1.2k次。使用说明:开启Google的登陆二步验证(即Google Authenticator服务)后用户登陆时需要输入额外由手机客户端生成的一次性密码。实现Google Authenticator功能需要服务器端和客户端的支持。服务器端负责密钥的生成、验证一次性密码是否正确。客户端记录密钥后生成一次性密码。下载谷歌验证类库文件放到项目合适位置(我这边放在项目Vender下面)https://github.com/PHPGangsta/GoogleAuthenticatorPHP代码示例://引入谷_php otp 验证器

【Python】matplotlib.plot画图横坐标混乱及间隔处理_matplotlib更改横轴间距-程序员宅基地

文章浏览阅读4.3k次,点赞5次,收藏11次。matplotlib.plot画图横坐标混乱及间隔处理_matplotlib更改横轴间距

docker — 容器存储_docker 保存容器-程序员宅基地

文章浏览阅读2.2k次。①Storage driver 处理各镜像层及容器层的处理细节,实现了多层数据的堆叠,为用户 提供了多层数据合并后的统一视图②所有 Storage driver 都使用可堆叠图像层和写时复制(CoW)策略③docker info 命令可查看当系统上的 storage driver主要用于测试目的,不建议用于生成环境。_docker 保存容器

随便推点

网络拓扑结构_网络拓扑csdn-程序员宅基地

文章浏览阅读834次,点赞27次,收藏13次。网络拓扑结构是指计算机网络中各组件(如计算机、服务器、打印机、路由器、交换机等设备)及其连接线路在物理布局或逻辑构型上的排列形式。这种布局不仅描述了设备间的实际物理连接方式,也决定了数据在网络中流动的路径和方式。不同的网络拓扑结构影响着网络的性能、可靠性、可扩展性及管理维护的难易程度。_网络拓扑csdn

JS重写Date函数,兼容IOS系统_date.prototype 将所有 ios-程序员宅基地

文章浏览阅读1.8k次,点赞5次,收藏8次。IOS系统Date的坑要创建一个指定时间的new Date对象时,通常的做法是:new Date("2020-09-21 11:11:00")这行代码在 PC 端和安卓端都是正常的,而在 iOS 端则会提示 Invalid Date 无效日期。在IOS年月日中间的横岗许换成斜杠,也就是new Date("2020/09/21 11:11:00")通常为了兼容IOS的这个坑,需要做一些额外的特殊处理,笔者在开发的时候经常会忘了兼容IOS系统。所以就想试着重写Date函数,一劳永逸,避免每次ne_date.prototype 将所有 ios

如何将EXCEL表导入plsql数据库中-程序员宅基地

文章浏览阅读5.3k次。方法一:用PLSQL Developer工具。 1 在PLSQL Developer的sql window里输入select * from test for update; 2 按F8执行 3 打开锁, 再按一下加号. 鼠标点到第一列的列头,使全列成选中状态,然后粘贴,最后commit提交即可。(前提..._excel导入pl/sql

Git常用命令速查手册-程序员宅基地

文章浏览阅读83次。Git常用命令速查手册1、初始化仓库git init2、将文件添加到仓库git add 文件名 # 将工作区的某个文件添加到暂存区 git add -u # 添加所有被tracked文件中被修改或删除的文件信息到暂存区,不处理untracked的文件git add -A # 添加所有被tracked文件中被修改或删除的文件信息到暂存区,包括untracked的文件...

分享119个ASP.NET源码总有一个是你想要的_千博二手车源码v2023 build 1120-程序员宅基地

文章浏览阅读202次。分享119个ASP.NET源码总有一个是你想要的_千博二手车源码v2023 build 1120

【C++缺省函数】 空类默认产生的6个类成员函数_空类默认产生哪些类成员函数-程序员宅基地

文章浏览阅读1.8k次。版权声明:转载请注明出处 http://blog.csdn.net/irean_lau。目录(?)[+]1、缺省构造函数。2、缺省拷贝构造函数。3、 缺省析构函数。4、缺省赋值运算符。5、缺省取址运算符。6、 缺省取址运算符 const。[cpp] view plain copy_空类默认产生哪些类成员函数

推荐文章

热门文章

相关标签