机器学习入门之糖尿病预测——ML-sklearn_diabetes.csv下载-程序员宅基地

技术标签: 糖尿病  ML-sklearn  

从网上找到一处实例,跟着先把机器学习的数据分析的流程先了解一遍,把此实例的每一步理解记录一下。
数据集下载链接:https://github.com/susanli2016/Machine-Learning-with-Python/blob/master/diabetes.csv

一步步慢慢理解ML-sklearn

from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)

上面这个代码块可以放在.py文件的开头,防止在运行过程中会出现不必要的警告。


import pandas as pd
diabetes = pd.read_csv("diabetes.csv")
print(diabetes.columns)  # check the column names

导入数据集,输出该数据集每列的类名,如下:

Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
       'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
      dtype='object')

diabetes.head()     # default n = 5,show five rows
# the results 0 means not having diabetes,1 means having diabetes
# get the cows and cols of diabetes
print("dimension of diabetes data: {}".format(diabetes.shape)) 
# group the "Outcome" data to get the number of each group
print(diabetes.groupby('Outcome').size())  

diabetes.csv 文件中,"Outcome"这一列中0代表没有糖尿病,1代表有糖尿病。
代码输出俩个结果:csv文件的行数和列数;"Outcome"这一列中0,1的统计情况。

dimension of diabetes data: (768, 9)
Outcome
0    500
1    268
dtype: int64

import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(diabetes['Outcome'], label="Count")
plt.savefig("糖尿病数据处理图片/0_1_graph")

对"Outcome"这一列的数据进行绘图:
在这里插入图片描述


from sklearn.model_selection import train_test_split
diabetes.info()     # get the diatebes' info
x_train, x_test, y_train, y_test = train_test_split(
    diabetes.loc[:, diabetes.columns != 'Outcome'],
    diabetes['Outcome'], stratify=diabetes['Outcome'],
    random_state=66)

对数据集进行分隔,随机分为训练子集和测试子集。


KNN算法
from sklearn.neighbors import KNeighborsClassifier

training_accuracy = []
test_accuracy = []
# try n_neighbors from 1 to 10
neighbors_settings = range(1, 11)
for n_neighbors in neighbors_settings:
    knn = KNeighborsClassifier(n_neighbors=n_neighbors)  # build the models
    knn.fit(x_train, y_train)  # use x_train as train data and y_train as target value
    training_accuracy.append(knn.score(x_train, y_train))  # record training set accuracy
    test_accuracy.append(knn.score(x_test, y_test))  # record test set accuracy

'''
The relationship between the training set and the test set on the model prediction
accuracy (Y-axis) and the number of nearest neighbors (X-axis) is demonstrated
'''
plt.figure()
plt.plot(neighbors_settings, training_accuracy, label="training accuracy")
plt.plot(neighbors_settings, test_accuracy, label="test accuracy")
plt.ylabel("Accuracy")
plt.xlabel("n_neighbors")
plt.legend()
plt.savefig("糖尿病数据处理图片/knn_compare_model")

使用KNN算法寻找训练集和测试集在模型预测准确度(y轴)和近邻点个数(x轴)设置之间的关系。得到的关系图片如下:
在这里插入图片描述
为了使训练集和测试集的准确度都最高,我们选择9个邻近点,即n_neghbors=9。


# select n_neighbors = 9
knn = KNeighborsClassifier(n_neighbors=9)
knn.fit(x_train, y_train)
print("Accuracy of K-NN classifier on training set: {:.2f}".format(knn.score(x_train, y_train)))
print("Accuracy of K-NN classifier on test set: {:.2f}".format(knn.score(x_test, y_test)))

在上一步的基础上,我们选择了n_neighbors=9来进行KNN算法模拟,输出KNN分类训练的准确度:

Accuracy of K-NN classifier on training set: 0.79
Accuracy of K-NN classifier on test set: 0.78

线性逻辑回归
from sklearn.linear_model import LogisticRegression
# logistic regression analysis
"""
The accuracy of the model with regularization parameter C=1(default value) was 78%
the training set and 77% on the test set
"""
logreg = LogisticRegression(solver='liblinear').fit(x_train, y_train)
print("Training set score : {:.3f}".format(logreg.score(x_train, y_train)))
print("Test set score: {:.3f}".format(logreg.score(x_test, y_test)))

对数据再进行逻辑回归训练,得到的训练准确度如下:

Training set score : 0.781
Test set score: 0.771

在这里可以设置正则化参数C的值,默认值为1,当我们设置为C=100时,

"""
When the regularization parameter C is set to 100,
the accuracy of the model on the training set is slightly improved.
but the accuracy on the test set is slightly reduced.
"""
logreg100 = LogisticRegression(C=100, solver='liblinear').fit(x_train, y_train)
print("Training set score : {:.3f}".format(logreg100.score(x_train, y_train)))
print("Test set score: {:.3f}".format(logreg100.score(x_test, y_test)))

训练集的准确度有所提升但测试集的准确度下降,说明C=1比C=100好。

Training set score : 0.785
Test set score: 0.766

当C=0.001时,得到的准确度如下:

logreg001 = LogisticRegression(C=0.001, solver='liblinear').fit(x_train, y_train)
print("Training set score : {:.3f}".format(logreg001.score(x_train, y_train)))
print("Test set score: {:.3f}".format(logreg001.score(x_test, y_test)))
Training set score : 0.686
Test set score: 0.714

接下来用可视化的方法来看看不同正则化参数下所得的模型系数。

diabetes_features = [x for i, x in enumerate(diabetes.columns) if i != 8]

plt.figure(figsize=(8, 6))
plt.plot(logreg.coef_.T, 'o', label="C=1")
plt.plot(logreg100.coef_.T, 'd', label="C=100")
plt.plot(logreg001.coef_.T, '*', label="C=0.001")
plt.xticks(range(diabetes.shape[1]), diabetes_features, rotation=90)
plt.hlines(0, 0, diabetes.shape[1])
plt.ylim(-5, 5)
plt.xlabel("Feature")
plt.ylabel("Coefficient magnitude")
plt.legend()
plt.savefig("糖尿病数据处理图片/log_coef")

在这里插入图片描述
可以看到“DiabetesPedigreeFunction”(糖尿病遗传函数)在 C=100, C=1 和C=0.001的情况下, 系数都为正。这表明无论是哪个模型,DiabetesPedigreeFunction(糖尿病遗传函数)这个特征值都与样本为糖尿病是正相关的。


决策树
from sklearn.tree import DecisionTreeClassifier
# decision tree
"""
The results show that the accuracy of the training set is 100%,
while the accuracy of the test set is only 74.1%. So the decision tree is over-fitting.
"""
tree = DecisionTreeClassifier(random_state=0)
tree.fit(x_train, y_train)
print("\nPreliminary results of decision tree fitting:")
print("Accuracy on training set: {:.3f}".format(tree.score(x_train, y_train)))
print("Accuract on test set: {:.3f}".format(tree.score(x_test, y_test)))

对数据集进行决策树分析,发现训练集的准确度达到了100%,而测试集的准确度只有71.4%。所以我们要限制树的深度来减少过度拟合。

Preliminary results of decision tree fitting:
Accuracy on training set: 1.000
Accuract on test set: 0.714

设置max_depth=3,代码和输出结果如下:

# setting max_depth=3, limit the depth of the tree to reduce overfitting.
tree = DecisionTreeClassifier(max_depth=3, random_state=0)
tree.fit(x_train, y_train)
print("\nFinally results of decision tree fitting:")
print("Accuracy on training set: {:.3f}".format(tree.score(x_train, y_train)))
print("Accuract on test set: {:.3f}".format(tree.score(x_test, y_test)))
# output the feature importance
print("Feature importance:\n{}".format(tree.feature_importances_))

看到训练集准确度有所降低,但测试集准确度升高了。此外还输出了决策树中的特征重要性——决策树的特征重要性用来衡量每个特征对预测结果的重要性的。

Finally results of decision tree fitting:
Accuracy on training set: 0.773
Accuract on test set: 0.740
Feature importance:
[0.04554275 0.6830362  0.         0.         0.         0.27142106
 0.         0.        ]

对特征重要性进行数据可视化处理:

def plot_feature_importances_diatebes(model):
    plt.figure(figsize=(8, 6))
    n_features = 8
    plt.barh(range(n_features), model.feature_importances_, align='center')
    plt.yticks(np.arange(n_features), diabetes_features)
    plt.xlabel("Features importance")
    plt.ylabel("Feature")
    plt.ylim(-1, n_features)


plot_feature_importances_diatebes(tree)
plt.savefig("糖尿病数据处理图片/feature_importance")

在这里插入图片描述
直观的看出,Glucose(葡萄糖)是目前最重要的特征。BMI(身体质量指数)为第二重要的信息特征。


随机森林
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
"""
A random forest of 100 trees was used to centralize the diabetes data
"""
# here I use default settings
rf = RandomForestClassifier(n_estimators=100, random_state=0)
rf.fit(x_train, y_train)
print("\nPreliminary results of decision tree fitting:")
print("Accuracy on training set: {:.3f}".format(rf.score(x_train, y_train)))
print("Accuracy on test set: {:.3f}".format(rf.score(x_test, y_test)))

使用100课树组成的随机森林对数据集进行分析。得到训练集的准确度为100%,测试集有78.6%,比逻辑回归和单一决策树都要好,但是我们还可以调节max_depth的值,看准确度是否能再提升。

Preliminary results of decision tree fitting:
Accuracy on training set: 1.000
Accuracy on test set: 0.786
# now, the max_depth = 3
rf1 = RandomForestClassifier(max_depth=3, n_estimators=100, random_state=0)
rf1.fit(x_train, y_train)
print("\nFinally results of decision tree fitting:")
print("Accuracy on training set: {:.3f}".format(rf1.score(x_train, y_train)))
print("Accuracy on test set: {:.3f}".format(rf1.score(x_test, y_test)))
"""By the results we could find the accuracy is reduced"""
Finally results of decision tree fitting:
Accuracy on training set: 0.800
Accuracy on test set: 0.755

可以看到,调整max_depth后,测试集的准确度下降了,因此,还是默认情况下准确度更好。
对随机森林进行特征重要度可视化:

plot_feature_importances_diatebes(rf)
plt.savefig("糖尿病数据处理图片/feature_importance_rf")

在这里插入图片描述
结果与单一决策树类似,随机森林的结果仍然显示特征"Glucose"(葡萄糖)的重要度最高。BMI(身体质量指数)为第二重要的信息特征。


梯度提升
gb = GradientBoostingClassifier(random_state=0)
gb.fit(x_train, y_train)
print("\nPreliminary results of decision tree fitting:")
print("Accuracy on training set: {:.3f}".format(gb.score(x_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gb.score(x_test, y_test)))
plot_feature_importances_diatebes(gb)
plt.savefig("糖尿病数据处理图片/feature_importance_gb")
Preliminary results of decision tree fitting:
Accuracy on training set: 0.917
Accuracy on test set: 0.792

在这里插入图片描述
训练准确度太高,可能过拟合了。接下来通过限制最大深度和降低学习效率来进行修减。

限制最大深度
gb1 = GradientBoostingClassifier(max_depth=1, random_state=0)
gb1.fit(x_train, y_train)
print("\nFinally results of decision tree fitting:")
print("Accuracy on training set: {:.3f}".format(gb1.score(x_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gb1.score(x_test, y_test)))
plot_feature_importances_diatebes(gb1)
plt.savefig("糖尿病数据处理图片/feature_importance_gb1")
Finally results of decision tree fitting:
Accuracy on training set: 0.804
Accuracy on test set: 0.781

在这里插入图片描述

降低学习效率
gb2 = GradientBoostingClassifier(random_state=0, learning_rate=0.01)
gb2.fit(x_train, y_train)
print("Accuracy on training set: {:.3f}".format(gb2.score(x_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gb2.score(x_test, y_test)))
plot_feature_importances_diatebes(gb2)
plt.savefig("糖尿病数据处理图片/feature_importance_gb2")
Accuracy on training set: 0.802
Accuracy on test set: 0.776

在这里插入图片描述
可以观察到,两种方法都降低了训练集的准确度,但都没有提高测试集的准确度。
但是,我们可以根据特征重要度图来观察是否结果和前面的类似。可以发现,不管怎么进行修改,“Glucose”(葡萄糖)仍然是最重要的信息特征,"BMI"仍然是第二重要的信息特征。


向量机

x_train = x_train.astype(np.float64)
y_train = y_train.astype(np.float64)
x_test = x_test.astype(np.float64)
y_test = y_test.astype(np.float64)

先对数据进行类型处理,不然会在运行过程中显示警告,即使它不影响运行结果。


from sklearn.svm import SVC
svc = SVC()
svc.fit(x_train, y_train)
print("Accuracy on training set: {:.2f}".format(svc.score(x_train, y_train)))
print("Accuracy on test set: {:.2f}".format(svc.score(x_test, y_test)))

使用向量机对数据集进行拟合,得到准确度为:

Accuracy on training set: 1.00
Accuracy on test set: 0.65

这个结果显然过度拟合,虽然训练集的准确度有100%,但是测试集的准确度只有65%。因此,需要调整各特征值的尺度使其在同一量表上。

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.fit_transform(x_test)

然后再进行拟合:

svc = SVC()
svc.fit(x_train_scaled, y_train)
print("Accuracy on training set: {:.2f}".format(svc.score(x_train_scaled, y_train)))
print("Accuracy on test set: {:.2f}".format(svc.score(x_test_scaled, y_test)))
Accuracy on training set: 0.77
Accuracy on test set: 0.77

这是在参数默认的情况下的拟合结果,我们再试一试提高C值后的结果。令C=1000.

svc = SVC(C=1000)
svc.fit(x_train_scaled, y_train)
print("Accuracy on training set: {:.3f}".format(svc.score(x_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(svc.score(x_test_scaled, y_test)))
Accuracy on training set: 0.790
Accuracy on test set: 0.797

显然观察到,训练集和测试集的准确度都有所提高。


深度学习
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(random_state=42)
mlp.fit(x_train, y_train)
print("Accuracy on training set: {:.2f}".format(mlp.score(x_train, y_train)))
print("Accuracy on test set: {:.2f}".format(mlp.score(x_test, y_test)))
Accuracy on training set: 0.73
Accuracy on test set: 0.72

多层神经网络(MLP)的表现并没有其他的模型好,所以要对数据进行处理。

# Standardized data
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.fit_transform(x_test)
mlp = MLPClassifier(random_state=0)
mlp.fit(x_train_scaled, y_train)
print("Accuracy on training set: {:.3f}".format(mlp.score(x_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(mlp.score(x_test_scaled, y_test)))
Accuracy on training set: 0.823
Accuracy on test set: 0.802
增加迭代次数:
mlp = MLPClassifier(max_iter=10000, random_state=0)
mlp.fit(x_train_scaled, y_train)
print("Accuracy on training set: {:.3f}".format(mlp.score(x_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(mlp.score(x_test_scaled, y_test)))
Accuracy on training set: 1.000
Accuracy on test set: 0.771

发现增加迭代次数知识增加了训练集的准确度,而测试集的准确度还降低了。

调高alpha参数并且加强权重的正则化
mlp = MLPClassifier(max_iter=10000, alpha=1, random_state=0)
mlp.fit(x_train_scaled, y_train)
print("Accuracy on training set: {:.3f}".format(mlp.score(x_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(mlp.score(x_test_scaled, y_test)))
Accuracy on training set: 0.806
Accuracy on test set: 0.797

结果比上一个好,但没有第一次结果好。

最后,绘制了一张在糖尿病数据集上学习的神经网络的第一层权重热图。

plt.figure(figsize=(20, 5))
plt.imshow(mlp.coefs_[0], interpolation='none', cmap='viridis')
plt.yticks(range(8), diabetes_features)
plt.xlabel("Columns in weight matrix")
plt.ylabel("Input feature")
plt.colorbar()
plt.savefig("糖尿病数据处理图片/feature_hot")

在这里插入图片描述
热图很模糊,想要看清楚哪一个特征度的重要性是不容易的。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_43207025/article/details/94852790

智能推荐

c# 调用c++ lib静态库_c#调用lib-程序员宅基地

文章浏览阅读2w次,点赞7次,收藏51次。四个步骤1.创建C++ Win32项目动态库dll 2.在Win32项目动态库中添加 外部依赖项 lib头文件和lib库3.导出C接口4.c#调用c++动态库开始你的表演...①创建一个空白的解决方案,在解决方案中添加 Visual C++ , Win32 项目空白解决方案的创建:添加Visual C++ , Win32 项目这......_c#调用lib

deepin/ubuntu安装苹方字体-程序员宅基地

文章浏览阅读4.6k次。苹方字体是苹果系统上的黑体,挺好看的。注重颜值的网站都会使用,例如知乎:font-family: -apple-system, BlinkMacSystemFont, Helvetica Neue, PingFang SC, Microsoft YaHei, Source Han Sans SC, Noto Sans CJK SC, W..._ubuntu pingfang

html表单常见操作汇总_html表单的处理程序有那些-程序员宅基地

文章浏览阅读159次。表单表单概述表单标签表单域按钮控件demo表单标签表单标签基本语法结构<form action="处理数据程序的url地址“ method=”get|post“ name="表单名称”></form><!--action,当提交表单时,向何处发送表单中的数据,地址可以是相对地址也可以是绝对地址--><!--method将表单中的数据传送给服务器处理,get方式直接显示在url地址中,数据可以被缓存,且长度有限制;而post方式数据隐藏传输,_html表单的处理程序有那些

PHP设置谷歌验证器(Google Authenticator)实现操作二步验证_php otp 验证器-程序员宅基地

文章浏览阅读1.2k次。使用说明:开启Google的登陆二步验证(即Google Authenticator服务)后用户登陆时需要输入额外由手机客户端生成的一次性密码。实现Google Authenticator功能需要服务器端和客户端的支持。服务器端负责密钥的生成、验证一次性密码是否正确。客户端记录密钥后生成一次性密码。下载谷歌验证类库文件放到项目合适位置(我这边放在项目Vender下面)https://github.com/PHPGangsta/GoogleAuthenticatorPHP代码示例://引入谷_php otp 验证器

【Python】matplotlib.plot画图横坐标混乱及间隔处理_matplotlib更改横轴间距-程序员宅基地

文章浏览阅读4.3k次,点赞5次,收藏11次。matplotlib.plot画图横坐标混乱及间隔处理_matplotlib更改横轴间距

docker — 容器存储_docker 保存容器-程序员宅基地

文章浏览阅读2.2k次。①Storage driver 处理各镜像层及容器层的处理细节,实现了多层数据的堆叠,为用户 提供了多层数据合并后的统一视图②所有 Storage driver 都使用可堆叠图像层和写时复制(CoW)策略③docker info 命令可查看当系统上的 storage driver主要用于测试目的,不建议用于生成环境。_docker 保存容器

随便推点

网络拓扑结构_网络拓扑csdn-程序员宅基地

文章浏览阅读834次,点赞27次,收藏13次。网络拓扑结构是指计算机网络中各组件(如计算机、服务器、打印机、路由器、交换机等设备)及其连接线路在物理布局或逻辑构型上的排列形式。这种布局不仅描述了设备间的实际物理连接方式,也决定了数据在网络中流动的路径和方式。不同的网络拓扑结构影响着网络的性能、可靠性、可扩展性及管理维护的难易程度。_网络拓扑csdn

JS重写Date函数,兼容IOS系统_date.prototype 将所有 ios-程序员宅基地

文章浏览阅读1.8k次,点赞5次,收藏8次。IOS系统Date的坑要创建一个指定时间的new Date对象时,通常的做法是:new Date("2020-09-21 11:11:00")这行代码在 PC 端和安卓端都是正常的,而在 iOS 端则会提示 Invalid Date 无效日期。在IOS年月日中间的横岗许换成斜杠,也就是new Date("2020/09/21 11:11:00")通常为了兼容IOS的这个坑,需要做一些额外的特殊处理,笔者在开发的时候经常会忘了兼容IOS系统。所以就想试着重写Date函数,一劳永逸,避免每次ne_date.prototype 将所有 ios

如何将EXCEL表导入plsql数据库中-程序员宅基地

文章浏览阅读5.3k次。方法一:用PLSQL Developer工具。 1 在PLSQL Developer的sql window里输入select * from test for update; 2 按F8执行 3 打开锁, 再按一下加号. 鼠标点到第一列的列头,使全列成选中状态,然后粘贴,最后commit提交即可。(前提..._excel导入pl/sql

Git常用命令速查手册-程序员宅基地

文章浏览阅读83次。Git常用命令速查手册1、初始化仓库git init2、将文件添加到仓库git add 文件名 # 将工作区的某个文件添加到暂存区 git add -u # 添加所有被tracked文件中被修改或删除的文件信息到暂存区,不处理untracked的文件git add -A # 添加所有被tracked文件中被修改或删除的文件信息到暂存区,包括untracked的文件...

分享119个ASP.NET源码总有一个是你想要的_千博二手车源码v2023 build 1120-程序员宅基地

文章浏览阅读202次。分享119个ASP.NET源码总有一个是你想要的_千博二手车源码v2023 build 1120

【C++缺省函数】 空类默认产生的6个类成员函数_空类默认产生哪些类成员函数-程序员宅基地

文章浏览阅读1.8k次。版权声明:转载请注明出处 http://blog.csdn.net/irean_lau。目录(?)[+]1、缺省构造函数。2、缺省拷贝构造函数。3、 缺省析构函数。4、缺省赋值运算符。5、缺省取址运算符。6、 缺省取址运算符 const。[cpp] view plain copy_空类默认产生哪些类成员函数

推荐文章

热门文章

相关标签