5G基站硬件架构及演进研究-程序员宅基地

技术标签: 网络  芯片  人工智能  物联网  大数据  

本文经《邮电设计技术》授权发布

简介:本文介绍了5G基站的硬件架构、核心器件及产业发展状况,分析了基站硬件架构的未来发展趋势。

1

5G基站硬件架构

5G基站设备的整体架构可分为2类:

  • BBU+AAU/RRU  2层架构

  • CU+DU+AAU/RRU  3层架构

其中,CU、DU为基带设备,共同完成5G基带协议处理的全部功能。

CU负责高层基带协议处理,并提供与核心网之间的回传接口。

DU完成底层基带协议处理,并提供与5G AAU/RRU之间的前传接口。CU与DU之间通过F1接口交互。

BBU集成了CU与DU的全部基带处理功能。

目前,5G基站设备主要采用BBU+AAU/RRU 2层架构。因此,下文主要分析了5G BBU与AAU/RRU的硬件架构。

DU设备架构与BBU类似,主要基于专用硬件平台实现。而CU设备,则一般基于通用硬件平台实现。

1.1  5G BBU硬件架构

5G BBU是基带设备,硬件架构如图1所示,包含基带处理单元、主控传输单元、电源模块以及接口单元等功能模块。

f6bdb4872a2cde05edb1a8a31ffcc834.png

图1 5G BBU硬件架构

其中,基带处理单元主要完成基带协议处理,提供与AAU/RRU通信的接口。主控传输单元负责基站的配置管理、信令处理、资源管理、数据传输,提供传输、时钟、LMT接口。电源模块,主要用于设备内部直流供电的管理。

硬件实现方面,5G BBU内部集成了多种半导体器件与芯片。主控传输单元与基带处理单元内部的核心器件如图2所示。

39b7d1b6d00e76e8304a6ca58718ba04.png

图2 BBU内部核心器件

处理器(CPU),主要用于高层基带协议以及控制信令处理。基带芯片(ASIC),是BBU的关键芯片,负责底层基带协议处理以及软件算法的实现。FPGA芯片,用于基带协议处理中的硬件加速,实现加密/解密或接口转换等专用功能。光模块,负责完成光电信号转换功能,用于前传接口处理。交换芯片,用于与外部接口之间的数据交换。高精度晶振,用于支持BBU内部各功能模块之间的同步。

1.2  5G AAU/RRU硬件架构

5G AAU/RRU,主要完成基带数字信号与射频模拟信号之间的转换,以及射频信号的收发处理功能。

对于6GHz以下频段,AAU设备主要分为64T64R、32T32R、16T16R 等主流规格,分别支持64、32、16个射频收发通道。

随着通道数的增加,CPRI接口的带宽需求大幅上升。为了降低前传接口的带宽需求,5G AAU采用eCPRI接口,将BBU的部分底层基带协议处理功能上移到AAU。

对于2通道、4通道等低通道数的5G射频设备,仍采用传统的“RRU+天线”的设备形态。设备内部无内置的天线阵列。

5G AAU与RRU的硬件架构基本相同,如图3所示。

b0cec5954be91fba0fb6487efc0bfaf4.png

图3  5G AAU/RRU硬件架构

设备内部包含了接口、数字基带、数字中频、收发信机、功放、双工器等主要模块与器件。

其中,接口模块主要用于前传接口信号处理。数字基带模块负责底层基带信号处理。数字中频模块实现上下变频、预失真和波峰系数降低等功能。收发信机模块,完成数模/模数转换(ADC/DAC)以及模拟信号的接收与发射信号处理功能。功放/低噪放分别,完成下行与上行信号的放大。滤波器,用于发射及接收信号的选频,以及干扰抑制。双工器,用于接收与发送通道的信号滤波与收发切换。

2

5G基站核心器件及产业现状

2.1  5G BBU核心器件

5G BBU主要基于专用硬件实现,内部集成了ASIC、CPU、FPGA等半导体器件。

核心器件的产业发展状况,直接影响BBU设备的性能。

一方面,核心器件的性能与工艺水平,决定了BBU设备整体的硬件处理能力与集成度。另一方面,半导体产业发展,也可推动专用硬件平台代际更替,优化BBU硬件架构,提高设备性能。

5G BBU内部,基带芯片是最关键的器件之一,可以反映不同设备的性能差异。

基带芯片,一般采用设备厂商自研的ASIC架构。业界主要采用14nm或7nm工艺,5nm芯片正在技术导入阶段。

台积电和三星,已具备5nm量产能力。

BBU使用的处理器,主要以ARM架构和X86架构为主,采用高性能的处理器芯片,以提供更强大的运算性能、更低的功耗,支持5G基带的复杂处理功能。

FPGA,即现场可编程门阵列,相比AISC,具有可编辑、更灵活、产品上市时间短等优势。

5G BBU使用FPGA以更好地支持设备软硬件的后向升级。

由于行业技术壁垒高,FPGA核心技术被Xilinx、Intel、Lattice等头部公司垄断,国外三巨头占据全球市场份额的90%。

2.2  5G AAU/RRU核心器件

5G AAU/RRU使用的核心器件主要包括基带芯片、数字中频芯片、收发信机芯片、ADC/DAC、功放、滤波器等。

其中,5G基站使用的功放,主要采用LDMOS和氮化镓2种技术。

在高频、大带宽、高功率的工作条件下,氮化镓功放的性能优于LDMOS。

一般,5G高频段设备使用GaN功放。而低频设备,则2种功放并用。

LDMOS器件工艺比较成熟,主要采用8英寸140nm工艺,主流供应商有NXP、Qorvo等。

氮化镓器件成本较高,制造工艺更加复杂,主要厂商包括住友、Wolfspeed、Qorvo等国外厂商以及能讯、创元达等国内厂商。

高速高精度的ADC/DAC,是5G基站的不可或缺的芯片。

目前,ADC/DAC市场份额分别被ADI、TI、MAXIM、等国外厂商独占。国内厂商在ADC/DAC芯片领域起步晚,能够量产高精度、高速度ADC/DAC的厂商较少,产品线比较单一。

基带与数字中频芯片的能力,需满足100MHz载波带宽、64路射频收发通道以及复杂的波束赋形算法处理的需求。主要采用主设备厂商自研的ASIC芯片,目前采用14nm或7nm工艺,下一代芯片将支持5nm或3nm技术。

收发信机芯片,用于收发链路的信号处理,可集成数字变频、混频、多通道ADC/DAC、放大和滤波等功能。

目前业界主流的芯片供应商为ADI和TI,单芯片支持四路射频通道处理,后续随着制程水平发展,可进一步提高单芯片的处理能力,降低AAU体积与功耗。

4G RRU使用的滤波器,主要以金属腔体滤波器为主,工艺成熟、价格低。但由于金属整体切割,导致体积较大。

5G时代,AAU天线数量大幅增加,对滤波器的尺寸与发热性能也有更高的要求,使得金属腔体滤波器应用受限。

陶瓷介质滤波器体积小、温度稳定性高,成为较好的解决方案。

因此,5G AAU前期采用工艺成熟的小型化金属滤波器,后期将主要采用陶瓷介质滤波器。

目前,规模较大的陶瓷介质滤波器厂商主要有灿勤、国华、凡谷等。

3

基站架构的未来演进

3.1  演进方向分析

在多样化业务需求的驱动下,5G网络需要具备更加弹性、灵活的业务提供能力,这就对5G基站设备提出了更高要求,推动设备硬件平台迭代更新、基站架构持续演进。

5G基站架构的演进分,为专用硬件增强架构通用化2个方向。

a)专用硬件增强。

现阶段5G基站设备主要在专用硬件平台上实现,通过定制化器件与配套软件,高效地实现BBU与AAU/RRU的特定功能。

后续,随着5G产业链的发展,核心半导体器件的性能将不断提升,专用硬件平台的性能也会逐代增强。

对于5G BBU设备,未来可通过升级5nm/3nm工艺、优化ASIC设计、增强基带芯片能力、引入更高性能多核处理器、FPGA等芯片等方式,提升载波与数据流处理能力,支持多模共平台。

对于5G AAU/RRU设备,通过优化架构设计与算法、提高数字与模拟芯片集成度、引入新材料等手段,使设备向着小型化、绿色节能的方向不断增强。

b)架构通用化。

通过将基站软件功能与硬件解耦,结合硬件资源云化、基站功能虚拟化等技术,可逐步实现基站架构通用化。

与专用硬件设备相比,通用化架构的基站设备支持灵活的软件部署与修改,硬件资源完全共享并可以由上层应用按需灵活调用。

同一硬件平台可兼容不同制式系统,支持按需开通,实现通信网络的敏捷部署。

同时,通用硬件平台支持后向平滑演进,可提高设备利用率,延长生命周期,降低网络建设成本。

目前,在移动通信网络中,核心网和数据中心等基础设施已经广泛采用了通用化硬件架构,满足上层应用对于底层基础资源的弹性伸缩需求。

在无线接入网领域,硬件通用化尚处于尝试探索阶段,相关技术及产业还不成熟,通用硬件平台的性能还无法支撑基站设备的全面通用化。

3.2  两种基站架构的对比

基于专用硬件与通用硬件的2种基站架构,存在本质的区别。如图4所示。

2510f937d157e2a54a99990ff960f1e4.png

图4 基站架构对比

对于专用硬件架构,专用硬件层主要包含CPU、ASIC、FPGA、射频芯片等,通过内部的高速交换接口或专用背板实现互联。上层配套软件系统实现协议栈基本功能以及设备商私有算法。软件系统与底层硬件紧耦合,设备内部接口对外不可见。

对于通用硬件架构,基础硬件层主要由通用计算、存储、网络等硬件资源以及FPGA/ASIC等硬件加速器构成。

其中,硬件加速器主要用于完成基带物理层协议、加/解密或接口交换等功能,卸载通用处理器的负荷。虚拟层提供对底层硬件的抽象、动态重构与管理,完成对硬件资源的灵活调配与控制,为上层应用提供虚拟的计算和转发功能。网元功能层实现了各类虚拟化网元功能,比如BBU、CU、DU等基站功能。

基于虚拟化技术的网元功能可根据业务需求灵活编排,并支持向更高层的应用平台开放底层设备能力。

两种架构在硬件实现、开放性、扩展性、资源调配方式、技术成熟度、产业生态等方面均存在各自的优劣势,如表1所示。

表1 2种基站架构的对比

d45ab99d761f04f86e2a6e3c2c89eaa5.png

传统的基站设备基于专用硬件平台实现,从2G发展到5G,专用硬件的集成度与处理能力已经逐代增强,设备体积变小、容量增大。

但是,由于专用设备固有的封闭性,传统基站的软件与硬件完全绑定,采用基站设备厂商定制化的ASIC架构以及配套软件系统,设备内部实现对外不可见。

这种高度固化、集成化的设备在能效、体积方面存在天然的优势。

但另一方面,这种黑盒化的设备存在可扩展性差、资源调配不灵活、资源利用率低等问题。同时,封闭的系统不利于扩大产业生态圈,造成一定的行业壁垒。

通用化的基站设备,基于通用硬件平台与虚拟化技术实现,天然地具备开放、可扩展性强的优势。

支持软硬件解耦、硬件资源按需调度、软件功能灵活定制,进而支持弹性扩容、软件快速升级,同时可根据业务的潮汐变化灵活调配资源,获得资源池化共享增益,提高资源利用率。

此外,通用化设备的开放架构,便于吸引更多厂商参与设备开发,丰富产品形态,繁荣产业生态。

但是,目前通用硬件的处理能力,还不足以完全满足5G基站的性能要求。特别是基带物理层功能与射频处理模块,对于算力、处理实时性、功耗等方面的要求较高。x86或ARM等通用处理器无法完全替代传统的ASIC或FPGA电路。

另外,虚机、容器等虚拟化技术方案,在基站中的应用还不成熟,有待逐步完善,满足电信级应用的需求。

在5G基站演进过程中,两种架构将并存。

对于容量、能效等要求较高的宏基站设备,专用硬件架构还将继续发挥其技术成熟、集成度高的优势。

对于体积、功耗较小的微站设备,则可先行实现通用化架构演进,充分发挥其开放、弹性灵活的优势,以更好应对各类垂直行业的多样化部署需求。

3.3  未来发展趋势展望

基站硬件架构的通用化演进,将给5G产业链带来诸多影响。

不仅会推动原有的基站产业链上下游加强技术创新、加速产品迭代,也会吸引更多的厂商参与产业链的各个环节,包括基础硬件、虚拟化软件、业务平台、系统集成等各个领域,构建更加开放、融合的产业生态,催生新的商业价值。

基站架构的通用化将会是一个分阶段演进的过程。

现阶段,基于通用硬件架构的基站设备,可在CU、DU分离架构的基础上实现。通过将高层基带协议功能部署于CU,将底层基带协议功能部署于DU,进行5G协议栈切分。

在此基础上,基于通用硬件平台,实现CU设备的全面通用化,DU、BBU设备通过进一步功能划分实现部分模块的通用化。

未来,随着硬件性能的提升以及虚拟化技术的发展,逐步实现DU、BBU设备的全面通用化。

由于5G RRC、SDAP、PDCP等高层基带协议对硬件处理实时性的要求相对宽松,易于移植到通用硬件平台来实现。因此,CU设备可完全基于通用硬件平台实现。

而基站物理层协议功能对硬件的运算速度、处理时延等要求较高,现有通用硬件及虚拟化技术还无法满足要求。

此外,与专用的ASIC或FPGA架构相比,通用硬件在集成度、功耗方面也存在不足。

因此,DU/BBU设备,还无法完全基于通用硬件平台实现,还需要经历从部分通用化到全面通用化的发展过程。

现阶段,DU/BBU设备需要在通用硬件平台的基础上进一步增加专用的物理层加速器,通过标准的PCIe接口,支持在通用硬件平台上即插即用。

未来,随着通用硬件性能的提高,DU/BBU设备可完全基于通用硬件平台实现。

在通用化演进的基础上,基站架构还会进一步向着开放、融合、智能等方向发展。

首先,传统基站的架构是封闭的,设备内部接口私有化,网络资源、信息与数据不开放。在通用硬件平台之上,可进一步定义标准化的开放接口,支持不同虚拟化网元之间互通;同时通过微服务化架构将网络能力抽象为服务,以服务的形式对外提供开放的资源,支持网络能力按需定制,打破传统网络的封闭性。

其次,随着网络的发展,目前运营商面临着多频段多制式并存、设备类型繁多、部署维护复杂的问题。随着基站架构的通用化演进,可基于统一的云平台,实现各类虚拟化网元功能,简化在网设备类别。此外,通用架构的基站设备还可与移动边缘计算单元、核心网单元共平台部署,构建一张端到端的融合网络。

另外,网络的智能化演进也是未来的必然趋势。

将人工智能技术引入基站,增强协议实现算法,优化处理流程,提升资源调度效率,实现基站内生的智能,使得设备性能达到最大化,促进网络与业务的协同。

在基站侧引入AI技术,对于设备硬件能力有一定的要求,算法模型越复杂、训练数据量越大,对于算力的要求越高。在基站架构通用化演进后,基础硬件支持池化共享、弹性扩容,硬件资源不会成为瓶颈,可充分发挥出基站内生智能的潜力。

——The End——

为便于阅读,本文略有删减。

参考文献:

[1].吕婷 曹亘 李轶群 李福昌. 基站架构及面向5G的演进研究[J].邮电设计技术,2017(08): 46-50.

[2] 吕婷 曹亘 张涛. 5G基站架构及部署策略研究[J].移动通信,2018(11): 72-77.

[3] 3GPP TS 38.300, NR; NR and NG-RAN Overall Description (Release 16)[S]. 2020.

[4] 3GPP TS 38.401,NG-RAN;Architecture description(Release 16)[S]. 2020.

[5].Common Public Radio Interface(CPRI):eCPRI Interface Specification[S].2017

[6].Common Public Radio Interface(CPRI);Interface Specification[S].2015

田霖,翟国伟,黄亮,等.基于集中式接入网架构的异构无线网络资源管理技术研究[J].电信科学, 2013(6): 25-31

[7] Zhai Guowei, Tian Lin, Zhou Yiqing, et al. Real-time guaranteed TDD protocol processing for centralized super base station architecture[C]// IEEE WCNC. NewOrleans, Mar. 2015: 989-994

[8].张浩.浅谈. 5G组网和基站云化[J].通信技术,2020(4): 918-922.

[9].赵小璞 陈俊可. 一种移动通信系统开放式基站体系架构研究[J].移动通信,2013(08): 64-68.

[10].Chengchao Liang, Yu F Richard. Wireless virtualizationfor next generation mobile cellular networks[J]. IEEETrans. Wireless Commun., 2015, 22(1): 61-69

[11].HAYES B. Cloud computing[J]. Communications of the ACM,2008, 51(7): 9-11.

[12].ETSI. Network functions virtualisation (NFV); use cases: GRNFV 001 V1.2.1[S]. 2017.

[13].MIJUMBI R, SERRAT J, GORRICHO J L, et al. Server placement and assignment in virtualized radio access networks[C]//International Conference on Network and Service

[14].Management, Nov 9-13, 2015, Barcelona, Spain. Piscataway:IEEE Press, 2015: 398-401.

[15].ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al.

[16].Network slicing for 5G with SDN/NFV: concepts, architectures,and challenges[J]. IEEE Communications Magazine, 2017,55(5): 80-87.

作者简介:

吕婷,毕业于北京邮电大学,高级工程师,硕士,主要从事5G网络技术及基站设备研究工作;

张涛,高级工程师,硕士,主要从事移动网通信技术标准化、组网应用方案研究工作;

李福昌,教授级高级工程师,博士,国家知识产权局中国专利审查技术专家,主要从事移动通信及固网移动融合等专业的标准制定、测试验证、课题研究等工作;

曹亘,高级工程师,博士,主要从事移动网通信网络新技术、标准化研究工作。

bd6c79797f97856d3b1f603ae9f41f00.png

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_38987057/article/details/124014428

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线

推荐文章

热门文章

相关标签