STL中迭代器的实现_stl迭代器实现-程序员宅基地

技术标签: struct  c++  iterator  distance  vector  list  class  

 

STL中迭代器的实现

junguo


    
       最近在看候捷先生的《STL源码剖析》,侯先生写的挺好的。但我读起来总感觉有些拗,理解起来有些费劲,可能他看问题的观点和我不一样造成的。开始的时候总是不太理解,后来理顺了自己的思路,发现有些东西其实并不难。在此把我对迭代器的理解整理一下,也是帮助自己消化一下,因为我发现不动手,很多东西容易遗忘。
      文章里提供的一些例子程序是在Dev-C++ 4.9.9.0中编译的,该版编译器使用的是GNU C++ 3.3.1版本的类库,该代码在其它版本上以及其它编译器中可能无法通过。3.3.1版本中的STL改进了一些内容,例如安全检查一类的东西,虽说使用上更保险。但也增加了理解的困难,所以我在源代码的摘取上参考了侯先生网站上提供的sgi-stl-2.91.57版本的内容,GUN的3.3.1其实也是在sgi-stl版本的基础上改进的。源代码可以在Dev-C++的安装目录的include/c++/3.3.1下找到,多是以stl_开头的(如list的实现文件是stl_list.h)。
        STL中为我们提供的最重要的两个内容是容器(vector,list等)和一系列的算法。在这些算法中有许多需要遍历容器中的所有元素,如search,sort等算法。STL的设计者希望将算法和容器分离开来,一个算法可以帮不同的容器实现功能。为此目的,STL应用到了《设计模式》中提到的迭代器模式。
    《设计模式》中将迭代器模式定义为:提供一种方法,使之能依序遍历容器中的每个元素,而不需要暴露容器内部的信息。在面向对象的设计里,实现迭代器,我们会为所有的迭代器提供一个统一的接口,然后更个容器的迭代器继承这个接口,然后在使用处通过接口来实现对不同迭代器的调用。但STL是采用泛型思维,利用摸版来实现的类库,所以它的迭代器的实现和面向对象稍有不同,但原理类似。在此将通过例子来具体看看STL中迭代器的实现。
    我们先来看看find()函数的实现:

 

    //摘自stl_algo.h
    template<typename _InputIter, typename _Tp>
    inline _InputIter
    find(_InputIter __first, _InputIter __last,
  const _Tp& __val,
  input_iterator_tag)
    {
      while (__first != __last && !(*__first == __val))
 ++__first;
      return __first;
    }

    find()函数的功能是在一个容器中查找一个元素,需要遍历两个迭代器对象_first和_last所在的区间。在此我们看到它对区间的遍历是通过++__first来实现的。也就是说迭代器需要重载++运算符来实现对容器的遍历。来具体看看vector和list中的迭代器实现。
    我们知道vector中的元素是连续存放的,类似于数组,在数组中可以通过指针很容易的实现对数组的遍历,在vector中也一样,并不需要提供给它专门的迭代器类,通过指针就可以实现迭代器的功能。看看例子:

#include<iostream>
#include<vector>
using namespace std;

template<typename _InputIter, typename _Tp>
inline _InputIter
myfind(_InputIter __first, _InputIter __last,
  const _Tp& __val)
{
  while (__first != __last && !(*__first == __val))
 ++__first;
  return __first;
}

int main()
{
    vector<int> vec;

 for( int i = 0; i < 10 ; i ++ )
  vec.push_back(i);

 int *p0 = &vec[0];
 int *p1 = &vec[10];
 
 int *p2 = myfind(p0,p1,6);

 if ( p2 != &vec[10])
  cout << *p2 << endl;
  
 system("pause");
    return 0;
}   

    例子中,我对find做了改动,改成了myfind,这是因为3.3.1的源代码中加入了traits技巧(在VC中我们是可以直接用find的),稍后我们将讲到该问题。但这里可以看到,通过指针就可以实现对vector的遍历。一般我们对迭代器的使用是如下的方式:
   vector<int>::iterator it;
   这里需要借助vector来定义迭代器,这里主要是为容器的使用提供一种统一的方式。因为list容器不能通过指针来实现遍历,它们需要实现自己的迭代器。我们来看看在vector中对于iterator的实现:

 template<typename T,class Alloc = alloc >
    class vector
    { 
 public:
      typedef T    value_type;
      typedef value_type*  iterator;
     
   ...
 };
 在此可以看到iterator在vector中也只是简单的被定义成了我们传入的类型参数T的指针(在3.3.1的代码中与这里的代码并不一样,还是traits的原因)。我们使用迭代器的一般方式是如下:
     find(vec.begin(),vec.end,6);
     再简单看看begin和end函数的实现:
template<typename T,class Alloc = alloc >
  class vector
    { 
proteted:
  iterator start;
  iterator finist;
 public:
      iterator begin(){return start;}
        iterator end(){return end;}
   ...
 };
    这里可以看到,只是为vector设置一个头指针和尾指针,然后通过begin和end来得到这两个指针。
 list就不可以直接通过指针来实现迭代器了,因为它里面的元素是不连续的。需要我们自己去实现,我们先把list的定义抽出来看看。
template <class _Tp >
struct _List_node {
  _List_node< _Tp>* _M_next; 
  _List_node< _Tp>* _M_prev;
  _Tp _M_data;
};
template <class _Tp, class Alloc = alloc>
class list {
protected:
  _List_nod<_Tp>e* node;
  ....
public:
  void push_front(const _Tp & x);
  void push_back(const _Tp & x);
  ....
};
   为了便于理解,我将代码进行了简单的修改,事实上3.3.1里的代码要比这个要复杂一些。一般来说设计一个链表,我们会把它分成两部分:_List_node用来存放数据,list用来操作链表。这样,迭代器实际传回的应该是_List_node,当它向前遍历的时候,传回的应该是它的下一个结点。按着这个结构,为链表来设计一个迭代器,如下:
template<class T>
struct __list_iterator {
   _List_node<T>* node;
  __list_iterator(_List_node<T>* x) : node(x) {}
  __list_iterator() {}

  bool operator==(const __list_iterator<T>& x) const { return node == x.node; }
  bool operator!=(const __list_iterator<T>& x) const { return node != x.node; }

  T& operator*() const { return (*node)._M_data; }
 
  __list_iterator<T>& operator++() {
    node = (_List_node<T>*)((*node)._M_next);   
    return *this;
  }
 
  __list_iterator<T> operator++(int) {
    __list_iterator<T> tmp = *this;
    ++*this;
    return tmp;
  }
 
};
      我们可以看到,迭代器中重载了==,!=,*,++等操作符,这是因为这些操作是在算法中经常要用到的操作符。看看myfind中实现,就可以明白:
while (__first != __last && !(*__first == __val))
 ++__first;
      这里要用到两个迭代器的比较(__first != __last),所以我们需要重载等于运算符;迭代器中值的比较(*__first == __val),这时候比较的不再是迭代器,而是迭代器所包含的内容(这里是_List_node的对象),所以我们需要重载*来得到它;最重要的就是遍历的实现,需要重载++运算符,这里是通过node = (_List_node<T>*)((*node)._M_next);将迭代器中的_List_node对象改为它的下一个对象来实现的。这样我们就完成了迭代器的设计。再来看看它的用法:
int main(int argc, char *argv[])
{
  list<int> mylist;
 
  for(int i = 0;i <= 10; i++ )
  {
      mylist.push_back(i);
  }
  // mylist.begin()得到的是STL本身提供的迭代器,所以我们需要得到它所包含的_List_node<T>对象指针。
  _List_node<int>* p1 = (_List_node<int>*)mylist.begin()._M_node;
  _List_node<int>* p2 = (_List_node<int>*)mylist.end()._M_node;
 
 //这里用我们得到的指针来生成我们自己的迭代器
  __list_iterator<int> it1(p1);
  __list_iterator<int> it2(p2);
 
  __list_iterator<int>  it3 = myfind(it1,it2,6);

 if ( it3 != it2 )
  cout << *it3 << endl;

  system("PAUSE"); 
  return 0;
}
        实际的迭代器的设计中,还会重载--和->运算符,感兴趣的可以自己看看源代码。还是和vector一样,STL会把迭代器的定义绑定到list类中去,我们来看看它的具体做法:
typedef _list_iterator<_Tp>                 iterator;
其实和vector一样,只要把以上的定义放到list类中,就可以了,然后,我们就可以通过list<int>::iterator ite 来定义list的迭代器了,事实上它生成的就是一个_list_iterator<int>对象。
从此可以看到迭代器就是为各个容器生成一个可以迭代自身的类,而再通过typedef来把该迭代类绑定到容器类中,这样就给了外部一个形式统一的使用方法。
 除了遍历,迭代器中还用到了一个重要的技巧——traits。我们先来看看traits的用处。

template <class ForwardIterator1, class ForwardIterator2, class T>
inline void __iter_swap(ForwardIterator1 a, ForwardIterator2 b, T*) {
  T tmp = *a;
  *a = *b;
  *b = tmp;
}  
        该方法是用来实现两个迭代器中内容的交换,我们可以看到此处需要一个临时变量tmp,而tmp所对应的类型是它所包含的对象的类型。这样我们就需要传入一个类型参数T*进去,如果我们不想传这个参数进去可不可以呢?这时候就需要用到traits技巧了。事实上traits并没有什么太难理解的部分,还是看看例子:
template<class T>
struct __list_iterator {
  typedef T value_type;
  ….
};
      现在我们在__list_iterator头部加typedef T value_type;这么一句话,然后我们重新写一下迭代器的交换函数,如下:
template <class ForwardIterator1, class ForwardIterator2>
inline void myiter_swap(ForwardIterator1 a, ForwardIterator2 b) {
  typename ForwardIterator1::value_type tmp = *a;
  *a = *b;
  *b = tmp;
}
    此时,就可以通过typename ForwardIterator1::value_type来定义临时变量了,看看它的效果:
int main(int argc, char *argv[])
{
  list<int> mylist;
 
  for(int i = 0;i <= 10; i++ )
  {
      mylist.push_back(i);
  }
  _List_node<int>* p1 = (_List_node<int>*)mylist.begin()._M_node;
  _List_node<int>* p2 = (_List_node<int>*)mylist.end()._M_node;
 
  __list_iterator<int> it1(p1);
  __list_iterator<int> it2(p2);
 
  __list_iterator<int> it3(p2);
  //交换第一个和最后一个元素的内容
  myiter_swap(it1,--it3);
  //打印所有的元素
   for( ;it1 != it2;it1++)
  cout << *it1 << endl;
  system("PAUSE"); 
  return 0;
}
     事实上,在迭代器中还会包括指针,引用,还有就是两个迭代器之间距离的类型。所以迭代器的中的实际代码应该如下:
template<class T>
struct __list_iterator {
typedef bidirectional_iterator_tag iterator_category;  //迭代器的类型,稍后解释
typedef T value_type;    // 对象类型
typedef value_type*pointer;  // 指针类型
typedef value_type& reference;  // 引用类型
typedef ptrdiff_t difference_type; // 迭代器距离类型,关于这个参数,我也搞不明白为什么需要

};
        这样具体的算法中就可以根据这些内容来定义自己所需要的类型了(STL的实际定义中和这里有些不同,在容器类(vector,list)中已经定义了这些类型,迭代器是再通过容器类定义,不过原理是一致的)。另外,STL中还提供了一个自己的萃取机,如下:
  template<typename _Iterator>
    struct iterator_traits {
      typedef typename _Iterator::iterator_category iterator_category;
      typedef typename _Iterator::value_type        value_type;
      typedef typename _Iterator::difference_type   difference_type;
      typedef typename _Iterator::pointer           pointer;
      typedef typename _Iterator::reference         reference;
};
    有了它,我们的myinter_swap函数就可以变成以下的内容:
template <class ForwardIterator1, class ForwardIterator2>
inline void myiter_swap(ForwardIterator1 a, ForwardIterator2 b) {
  typedef typename iterator_traits<ForwardIterator1>::value_type _ValueType1;
  _ValueType1 tmp = *a;
  *a = *b;
  *b = tmp;
}  

       似乎这段代码并没有使代码变的方便?想想,我们的vector中并没有定义迭代器类,只是直接把指针当作了迭代器。如果直接用以上的代码明显是会出问题的,因为指针根本没有value_type这些信息。为了这种情况,STL中提供了萃取机中针对指针的偏特化版本:

  template<typename _Tp>
    struct iterator_traits<_Tp*> {
      typedef random_access_iterator_tag iterator_category;
      typedef _Tp                         value_type;
      typedef ptrdiff_t                   difference_type;
      typedef _Tp*                        pointer;
      typedef _Tp&                        reference;
};

        这样vector对象就可以使用myiter_swap了,不然肯定编译不过去。还有一些针对其它类型(如常量指针)的偏特化版本,可以自己看看源码。
       在以上的代码中,我们看到了typedef random_access_iterator_tag iterator_category;这样的语句。iterator_category代表的是迭代器的分类,迭代器分为五种类型:
1, Input Iterator 这种类型的迭代器不允许外界改变,是唯读的。
2, Output Iterator 是唯写的。
3, Forard Iterator 可以读写,但它只能向前移动。
4, Bidirectional Iterator 可以读写,可以前后移动。
5, Random Access Iterator 可以读写,前后移动,并且支持p+n型的操作,也就是说可以前后移动多位,而不是一个一个的移动。
     在STL中,它们被定义为如下的形式:
///  Marking input iterators.
  struct input_iterator_tag {};
  ///  Marking output iterators.
  struct output_iterator_tag {};
  /// Forward iterators support a superset of input iterator operations.
  struct forward_iterator_tag : public input_iterator_tag {};
  /// Bidirectional iterators support a superset of forward iterator operations.
  struct bidirectional_iterator_tag : public forward_iterator_tag {};
  /// Random-access iterators support a superset of bidirectional iterator operations.
  struct random_access_iterator_tag : public bidirectional_iterator_tag {};

        可以看到它们并没有实际的代码,只是作为一个标记来用的。具体作用的话,还是通过函数来看看。STL的算法中提供了这样一个函数distance,它的作用是求出两个迭代器之间的距离,为了统一,函数可能写成这样:
template<typename _InputIterator>
inline typename iterator_traits<_InputIterator>::difference_type
__distance(_InputIterator __first, _InputIterator __last)
{
  typename iterator_traits<_InputIterator>::difference_type __n = 0;
  while (__first != __last) {
   ++__first; ++__n;
   }
    return __n;
 }
        这样的话,vector和list都可以使用这个函数,但这样一来,vector也需要遍历两个迭代器之间的所有内容了。但事实上,我们知道vector是连续的区间,完全可以通过两个迭代器之间的相减操作来完成这个计算。如果采用以上的操作,会降低它的效率。有什么办法来区分这两种操作呢?通过迭代器类型就可以完成,还是看看代码:
  template<typename _InputIterator>
    inline typename iterator_traits<_InputIterator>::difference_type
    __distance(_InputIterator __first, _InputIterator __last,
               input_iterator_tag)
    { 
      typename iterator_traits<_InputIterator>::difference_type __n = 0;
      while (__first != __last) {
        ++__first; ++__n;
      }
      return __n;
    }
 
  template<typename _RandomAccessIterator>
    inline typename iterator_traits<_RandomAccessIterator>::difference_type
    __distance(_RandomAccessIterator __first, _RandomAccessIterator __last,
               random_access_iterator_tag)
    {
      return __last - __first;
    }
  template<typename _InputIterator>
    inline typename iterator_traits<_InputIterator>::difference_type
    distance(_InputIterator __first, _InputIterator __last)
    {
      typedef typename iterator_traits<_InputIterator>::iterator_category category;
      return __distance(__first, __last, category ());
    }

       可以看到,STL提供了__distance的两个重载函数:一个针对input_iterator_tag,使用的我们上面提到的遍历的方法;一个针对random_access_iterator_tag,采用的直接相减的方法。并提供了distance函数,在该函数里通过
typedef typename iterator_traits<_InputIterator>::iterator_category category;来得到迭代器的类型,并通过category ()生成一个对象传入到__distance中,经过C++的重载机制实现了不同类型的调用。
      迭代器是STL中的重要内容,掌握它能帮助你更好的读懂STL源码,希望这篇文章能对你有帮助。
    (写完这篇东西,时间已经不早了,错误来不及挑了。呵呵,不过有时间也不一定会检查,太懒了,这个懒字了得)

 参考书籍: 《STL源码解析》 侯捷著 华中科技大学出版社

 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/junguo/article/details/671142

智能推荐

while循环&CPU占用率高问题深入分析与解决方案_main函数使用while(1)循环cpu占用99-程序员宅基地

文章浏览阅读3.8k次,点赞9次,收藏28次。直接上一个工作中碰到的问题,另外一个系统开启多线程调用我这边的接口,然后我这边会开启多线程批量查询第三方接口并且返回给调用方。使用的是两三年前别人遗留下来的方法,放到线上后发现确实是可以正常取到结果,但是一旦调用,CPU占用就直接100%(部署环境是win server服务器)。因此查看了下相关的老代码并使用JProfiler查看发现是在某个while循环的时候有问题。具体项目代码就不贴了,类似于下面这段代码。​​​​​​while(flag) {//your code;}这里的flag._main函数使用while(1)循环cpu占用99

【无标题】jetbrains idea shift f6不生效_idea shift +f6快捷键不生效-程序员宅基地

文章浏览阅读347次。idea shift f6 快捷键无效_idea shift +f6快捷键不生效

node.js学习笔记之Node中的核心模块_node模块中有很多核心模块,以下不属于核心模块,使用时需下载的是-程序员宅基地

文章浏览阅读135次。Ecmacript 中没有DOM 和 BOM核心模块Node为JavaScript提供了很多服务器级别,这些API绝大多数都被包装到了一个具名和核心模块中了,例如文件操作的 fs 核心模块 ,http服务构建的http 模块 path 路径操作模块 os 操作系统信息模块// 用来获取机器信息的var os = require('os')// 用来操作路径的var path = require('path')// 获取当前机器的 CPU 信息console.log(os.cpus._node模块中有很多核心模块,以下不属于核心模块,使用时需下载的是

数学建模【SPSS 下载-安装、方差分析与回归分析的SPSS实现(软件概述、方差分析、回归分析)】_化工数学模型数据回归软件-程序员宅基地

文章浏览阅读10w+次,点赞435次,收藏3.4k次。SPSS 22 下载安装过程7.6 方差分析与回归分析的SPSS实现7.6.1 SPSS软件概述1 SPSS版本与安装2 SPSS界面3 SPSS特点4 SPSS数据7.6.2 SPSS与方差分析1 单因素方差分析2 双因素方差分析7.6.3 SPSS与回归分析SPSS回归分析过程牙膏价格问题的回归分析_化工数学模型数据回归软件

利用hutool实现邮件发送功能_hutool发送邮件-程序员宅基地

文章浏览阅读7.5k次。如何利用hutool工具包实现邮件发送功能呢?1、首先引入hutool依赖<dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-all</artifactId> <version>5.7.19</version></dependency>2、编写邮件发送工具类package com.pc.c..._hutool发送邮件

docker安装elasticsearch,elasticsearch-head,kibana,ik分词器_docker安装kibana连接elasticsearch并且elasticsearch有密码-程序员宅基地

文章浏览阅读867次,点赞2次,收藏2次。docker安装elasticsearch,elasticsearch-head,kibana,ik分词器安装方式基本有两种,一种是pull的方式,一种是Dockerfile的方式,由于pull的方式pull下来后还需配置许多东西且不便于复用,个人比较喜欢使用Dockerfile的方式所有docker支持的镜像基本都在https://hub.docker.com/docker的官网上能找到合..._docker安装kibana连接elasticsearch并且elasticsearch有密码

随便推点

Python 攻克移动开发失败!_beeware-程序员宅基地

文章浏览阅读1.3w次,点赞57次,收藏92次。整理 | 郑丽媛出品 | CSDN(ID:CSDNnews)近年来,随着机器学习的兴起,有一门编程语言逐渐变得火热——Python。得益于其针对机器学习提供了大量开源框架和第三方模块,内置..._beeware

Swift4.0_Timer 的基本使用_swift timer 暂停-程序员宅基地

文章浏览阅读7.9k次。//// ViewController.swift// Day_10_Timer//// Created by dongqiangfei on 2018/10/15.// Copyright 2018年 飞飞. All rights reserved.//import UIKitclass ViewController: UIViewController { ..._swift timer 暂停

元素三大等待-程序员宅基地

文章浏览阅读986次,点赞2次,收藏2次。1.硬性等待让当前线程暂停执行,应用场景:代码执行速度太快了,但是UI元素没有立马加载出来,造成两者不同步,这时候就可以让代码等待一下,再去执行找元素的动作线程休眠,强制等待 Thread.sleep(long mills)package com.example.demo;import org.junit.jupiter.api.Test;import org.openqa.selenium.By;import org.openqa.selenium.firefox.Firefox.._元素三大等待

Java软件工程师职位分析_java岗位分析-程序员宅基地

文章浏览阅读3k次,点赞4次,收藏14次。Java软件工程师职位分析_java岗位分析

Java:Unreachable code的解决方法_java unreachable code-程序员宅基地

文章浏览阅读2k次。Java:Unreachable code的解决方法_java unreachable code

标签data-*自定义属性值和根据data属性值查找对应标签_如何根据data-*属性获取对应的标签对象-程序员宅基地

文章浏览阅读1w次。1、html中设置标签data-*的值 标题 11111 222222、点击获取当前标签的data-url的值$('dd').on('click', function() { var urlVal = $(this).data('ur_如何根据data-*属性获取对应的标签对象

推荐文章

热门文章

相关标签