LoRA学习笔记_全量更新 lora-程序员宅基地

技术标签: 学习  笔记  

Background

  1. 全参微调
    在这里插入图片描述
    全量微调指的是,在下游任务的训练中,对预训练模型的每一个参数都做更新。例如图中,给出了Transformer的Q/K/V矩阵的全量微调示例,对每个矩阵来说,在微调时,其d*d个参数,都必须参与更新。
  • 全量微调的显著缺点是,训练代价昂贵。例如GPT3的参数量有175B,我等单卡贵族只能望而却步,更不要提在微调中发现有bug时的覆水难收。同时,由于模型在预训练阶段已经吃了足够多的数据,收获了足够的经验。
  • 因此我只要想办法给模型增加一个额外知识模块,让这个小模块去适配我的下游任务,模型主体保持不变(freeze)即可。
  1. 局部微调办法

Adapter Tuning:
在这里插入图片描述

  • 图例中的左边是一层Transformer Layer结构,其中的Adapter就是我们说的“额外知识模块”;右边是Adatper的具体结构。在微调时,除了Adapter的部分,其余的参数都是被冻住的(freeze),这样我们就能有效降低训练的代价。

但这样的设计架构存在一个显著劣势:添加了Adapter后,模型整体的层数变深,会增加训练速度和推理速度,原因是:

  • 需要耗费额外的运算量在Adapter上
  • 当我们采用并行训练时(例如Transformer架构常用的张量模型并行),Adapter层会产生额外的通讯量,增加通讯时间

Prefix Tuning

在这里插入图片描述

通过对输入数据增加前缀(prefix)来做微调。当然,prefix也可以不止加载输入层,还可以加在Transformer Layer输出的中间层。

对于GPT这样的生成式模型,在输入序列的最前面加入prefix token,图例中加入2个prefix token,在实际应用中,prefix token的个数是个超参,可以根据模型实际微调效果进行调整。

对于BART这样的Encoder-Decoder架构模型,则在x和y的前面同时添加prefix token。在后续微调中,我们只需要冻住模型其余部分,单独训练prefix token相关的参数即可,每个下游任务都可以单独训练一套prefix token。


  • 那么prefix的含义是什么呢?

prefix的作用是引导模型提取x相关的信息,进而更好地生成y。
例如,我们要做一个summarization的任务,那么经过微调后,prefix就能领悟到当前要做的是个“总结形式”的任务,然后引导模型去x中提炼关键信息;
如果我们要做一个情感分类的任务,prefix就能引导模型去提炼出x中和情感相关的语义信息,以此类推。这样的解释可能不那么严谨,但大家可以大致体会一下prefix的作用。


Prefix Tuning虽然看起来方便,但也存在以下两个显著劣势;

  1. 较难训练,且模型的效果并不严格随prefix参数量的增加而上升,这点在原始论文中也有指出
  2. 会使得输入层有效信息长度减少。为了节省计算量和显存,我们一般会固定输入数据长度。增加了prefix之后,留给原始文字数据的空间就少了,因此可能会降低原始文字中prompt的表达能力。

LoRA

全参数微调太贵,Adapter Tuning存在训练和推理延迟,Prefix Tuning难训且会减少原始训练数据中的有效文字长度,那是否有一种微调办法,能改善这些不足呢?

  • 在这样动机的驱动下,作者提出了LoRA(Low-Rank Adaptation,低秩适配器)这样一种微调方法。

在这里插入图片描述
在这里插入图片描述

核心思想 - SVD

在这里插入图片描述
在这里插入图片描述

  • 小小的总结一下:W矩阵SVD分解(近似1),然后取三个分解矩阵的top r行(近似2)= W最重要的特征

SVD Code

import torch
import numpy as np
torch.manual_seed(0)

# ------------------------------------
# n:输入数据维度
# m:输出数据维度
# ------------------------------------
n = 10
m = 10

# ------------------------------------
# 随机初始化权重W
# 之所以这样初始化,是为了让W不要满秩,
# 这样才有低秩分解的意义
# ------------------------------------
nr = 10
mr = 2
W = torch.randn(nr,mr)@torch.randn(mr,nr)

# ------------------------------------
# 随机初始化输入数据x
# ------------------------------------
x = torch.randn(n)

# ------------------------------------
# 计算Wx
# ------------------------------------
y = W@x
print("原始权重W计算出的y值为:\n", y)

# ------------------------------------
# 计算W的秩
# ------------------------------------
r= np.linalg.matrix_rank(W)
print("W的秩为: ", r)

# ------------------------------------
# 对W做SVD分解
# ------------------------------------
U, S, V = torch.svd(W)

# ------------------------------------
# 根据SVD分解结果,
# 计算低秩矩阵A和B
# ------------------------------------
U_r = U[:, :r]
S_r = torch.diag(S[:r])
V_r = V[:,:r].t()

B = U_r@S_r # shape = (d, r)
A = V_r     # shape = (r, d)

# ------------------------------------
# 计算y_prime = BAx
# ------------------------------------
y_prime = B@A@x

print("SVD分解W后计算出的y值为:\n", y)

print("原始权重W的参数量为: ", W.shape[0]*W.shape[1])
print("低秩适配后权重B和A的参数量为: ", A.shape[0]*A.shape[1] + B.shape[0]*B.shape[1])
  • 输出的结果不变,参数量减小很多
原始权重W计算出的y值为:
 tensor([ 3.3896,  1.0296,  1.5606, -2.3891, -0.4213, -2.4668, -4.4379, -0.0375,
        -3.2790, -2.9361])
W的秩为:  2
SVD分解W后计算出的y值为:
 tensor([ 3.3896,  1.0296,  1.5606, -2.3891, -0.4213, -2.4668, -4.4379, -0.0375,
        -3.2790, -2.9361])
原始权重W的参数量为:  100
低秩适配后权重B和A的参数量为:  40

很有意思的自相矛盾

在这里插入图片描述

超参数 α \alpha α

在这里插入图片描述

实验验证
尽管理论上我们可以在模型的任意一层嵌入低秩适配器(比如Embedding, Attention,MLP等),但LoRA中只选咋在Attention层嵌入,并做了相关实验

在这里插入图片描述

LoRA使用

下游任务的example

LoRA源码

class LoRALayer():
    def __init__(
        self, 
        r: int, # 矩阵的秩
        lora_alpha: int, # 超参数a
        lora_dropout: float,
        merge_weights: bool,
    ):
        self.r = r
        self.lora_alpha = lora_alpha
        # Optional dropout
        if lora_dropout > 0.:
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_dropout = lambda x: x
        # Mark the weight as unmerged
        self.merged = False
        self.merge_weights = merge_weights

Embedding层

class Embedding(nn.Embedding, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        r: int = 0,
        lora_alpha: int = 1,
        merge_weights: bool = True,
        **kwargs
    ):
        nn.Embedding.__init__(self, num_embeddings, embedding_dim, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=0,
                           merge_weights=merge_weights)
        # Actual trainable parameters
        if r > 0:
            self.lora_A = nn.Parameter(self.weight.new_zeros((r, num_embeddings)))
            self.lora_B = nn.Parameter(self.weight.new_zeros((embedding_dim, r)))
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
        self.reset_parameters()

    def reset_parameters(self):
        nn.Embedding.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.zeros_(self.lora_A)
            nn.init.normal_(self.lora_B)

    def train(self, mode: bool = True):
        nn.Embedding.train(self, mode)
        if mode:
            if self.merge_weights and self.merged:
                # Make sure that the weights are not merged
                if self.r > 0:
                    self.weight.data -= (self.lora_B @ self.lora_A).transpose(0, 1) * self.scaling
                self.merged = False
        else:
            if self.merge_weights and not self.merged:
                # Merge the weights and mark it
                if self.r > 0:
                    self.weight.data += (self.lora_B @ self.lora_A).transpose(0, 1) * self.scaling
                self.merged = True
        
    def forward(self, x: torch.Tensor):
        if self.r > 0 and not self.merged:
            result = nn.Embedding.forward(self, x)
            after_A = F.embedding(
                x, self.lora_A.transpose(0, 1), self.padding_idx, self.max_norm,
                self.norm_type, self.scale_grad_by_freq, self.sparse
            )
            result += (after_A @ self.lora_B.transpose(0, 1)) * self.scaling
            return result
        else:
            return nn.Embedding.forward(self, x)
            

Linear层实现

class Linear(nn.Linear, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(
        self, 
        in_features: int, 
        out_features: int, 
        r: int = 0, 
        lora_alpha: int = 1, 
        lora_dropout: float = 0.,
        fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        merge_weights: bool = True,
        **kwargs
    ):
        nn.Linear.__init__(self, in_features, out_features, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
                           merge_weights=merge_weights)

        self.fan_in_fan_out = fan_in_fan_out
        # Actual trainable parameters
        if r > 0:
            self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
            self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
        self.reset_parameters()
        if fan_in_fan_out:
            self.weight.data = self.weight.data.transpose(0, 1)

    def reset_parameters(self):
        nn.Linear.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    def train(self, mode: bool = True):
        def T(w):
            return w.transpose(0, 1) if self.fan_in_fan_out else w
        nn.Linear.train(self, mode)
        if mode:
            if self.merge_weights and self.merged:
                # Make sure that the weights are not merged
                if self.r > 0:
                    self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
                self.merged = False
        else:
            if self.merge_weights and not self.merged:
                # Merge the weights and mark it
                if self.r > 0:
                    self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
                self.merged = True       

    def forward(self, x: torch.Tensor):
        def T(w):
            return w.transpose(0, 1) if self.fan_in_fan_out else w
        if self.r > 0 and not self.merged:
            result = F.linear(x, T(self.weight), bias=self.bias)            
            result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
            return result
        else:
            return F.linear(x, T(self.weight), bias=self.bias)


class MergedLinear(nn.Linear, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(
        self, 
        in_features: int, 
        out_features: int, 
        r: int = 0, 
        lora_alpha: int = 1, 
        lora_dropout: float = 0.,
        enable_lora: List[bool] = [False],
        fan_in_fan_out: bool = False,
        merge_weights: bool = True,
        **kwargs
    ):
        nn.Linear.__init__(self, in_features, out_features, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
                           merge_weights=merge_weights)
        assert out_features % len(enable_lora) == 0, \
            'The length of enable_lora must divide out_features'
        self.enable_lora = enable_lora
        self.fan_in_fan_out = fan_in_fan_out
        # Actual trainable parameters
        if r > 0 and any(enable_lora):
            self.lora_A = nn.Parameter(
                self.weight.new_zeros((r * sum(enable_lora), in_features)))
            self.lora_B = nn.Parameter(
                self.weight.new_zeros((out_features // len(enable_lora) * sum(enable_lora), r))
            ) # weights for Conv1D with groups=sum(enable_lora)
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
            # Compute the indices
            self.lora_ind = self.weight.new_zeros(
                (out_features, ), dtype=torch.bool
            ).view(len(enable_lora), -1)
            self.lora_ind[enable_lora, :] = True
            self.lora_ind = self.lora_ind.view(-1)
        self.reset_parameters()
        if fan_in_fan_out:
            self.weight.data = self.weight.data.transpose(0, 1)

    def reset_parameters(self):
        nn.Linear.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    def zero_pad(self, x):
        result = x.new_zeros((len(self.lora_ind), *x.shape[1:]))
        result[self.lora_ind] = x
        return result

卷积层

class ConvLoRA(nn.Module, LoRALayer):
    def __init__(self, conv_module, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
        super(ConvLoRA, self).__init__()
        self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
        assert isinstance(kernel_size, int)
        # Actual trainable parameters
        if r > 0:
            self.lora_A = nn.Parameter(
                self.conv.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
            )
            self.lora_B = nn.Parameter(
              self.conv.weight.new_zeros((out_channels//self.conv.groups*kernel_size, r*kernel_size))
            )
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.conv.weight.requires_grad = False
        self.reset_parameters()
        self.merged = False

    def reset_parameters(self):
        self.conv.reset_parameters()
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    def train(self, mode=True):
        super(ConvLoRA, self).train(mode)
        if mode:
            if self.merge_weights and self.merged:
                if self.r > 0:
                    # Make sure that the weights are not merged
                    self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
                self.merged = False
        else:
            if self.merge_weights and not self.merged:
                if self.r > 0:
                    # Merge the weights and mark it
                    self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
                self.merged = True

    def forward(self, x):
        if self.r > 0 and not self.merged:
            return self.conv._conv_forward(
                x, 
                self.conv.weight + (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling,
                self.conv.bias
            )
        return self.conv(x)

class Conv2d(ConvLoRA):
    def __init__(self, *args, **kwargs):
        super(Conv2d, self).__init__(nn.Conv2d, *args, **kwargs)

class Conv1d(ConvLoRA):
    def __init__(self, *args, **kwargs):
        super(Conv1d, self).__init__(nn.Conv1d, *args, **kwargs)

# Can Extend to other ones like this

class Conv3d(ConvLoRA):
    def __init__(self, *args, **kwargs):
        super(Conv3d, self).__init__(nn.Conv3d, *args, **kwargs)

QLoRA

四个改进:

  1. NormalFloat 4 bit:分数位量化,归一化到【-1,1】和模型的权重区间对齐,标准化
  2. 二次量化:对量化常量二次量化,减少空间占有
  3. Paged Parameter:内存页优化,使用不连续的内存空间存储KV cache,减少缓存
  4. 加入了更多的adapter层,每一个FFN layer都加了
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/RandyHan/article/details/132526148

智能推荐

240320俄罗斯方块java,JAVA游戏编程之三----j2me 手机游戏入门开发--俄罗斯方块_2-程序员宅基地

文章浏览阅读202次。packagecode;//importjava.awt.*;//importjava.awt.Canvas;//importjava.awt.event.*;//importjavax.swing.*;importjava.util.Random;importjavax.microedition.lcdui.*;//写界面所需要的包/***//***俄罗斯方块*高雷*2007年1..._240×320java游戏

在线电影院售票平台(源码+开题报告)-程序员宅基地

文章浏览阅读779次,点赞14次,收藏19次。然后,实现系统的数据管理和服务功能,包括用户的注册与登录、电影的分类与展示、电影信息的查询与推荐、座位的选择与预订、在线支付与电子票生成等。此外,随着在线视频平台的兴起,越来越多的人选择在线观看电影,这对传统电影院产生了巨大的冲击。研究意义: 开发在线电影院售票平台对于提升用户的观影体验、优化电影院的运营效率、促进电影产业的发展具有重要的意义。该系统旨在通过技术手段解决传统电影院售票中的问题,提供一个集成化的电影信息展示、座位选择、在线支付和用户评价平台,同时也为电影院和电影制作方提供有效的工具。

程序员熬夜写代码,用C/C++打造一个安全的即时聊天系统!_基于c++的即时聊天系统设计-程序员宅基地

文章浏览阅读509次。保护我们剩下的人的通话信息安全,使用TOX可以让你在和家人,朋友,爱人交流时保护你的隐私不受政府无孔不入的的偷窥.关于TOX:其他牛逼的软件因为一些细化服务问你要钱的时候, TOX分文不取 . 你用了TOX, 想干嘛就干嘛.网友评论:项目源码展示:源码测试效果:最后,如果你学C/C++编程有什么不懂的,可以来问问我哦,或许我能够..._基于c++的即时聊天系统设计

linux Java服务swap分区被占用内存泄露问题故障及解决方法_linux swap占用很高-程序员宅基地

文章浏览阅读584次。鱼弦:CSDN内容合伙人、CSDN新星导师、全栈领域创作新星创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)当Java服务在Linux系统中运行时,可能会出现swap分区被占用的内存泄露问题,导致系统性能下降或者崩溃。下面是该问题的故障及解决方法、底层结构、架构图、工作原理、使用场景详解和实际应用方式、原理详细描述、相关命令使用示例以及文献材料链接。_linux swap占用很高

word中利用宏替换标点标点全角与半角-程序员宅基地

文章浏览阅读662次。Alt+F11,然后插入-模块:复制下面代码到编辑窗口:Sub 半角标点符号转换为全角标点符号()'中英互译文档中将中文段落中的英文标点符号替换为中文标点符号 Dim i As Paragraph, ChineseInterpunction() As Variant, EnglishInterpunction() As Variant Dim MyRange..._替换半角宏

Android WebView使用总结_android webview真正加载完成-程序员宅基地

文章浏览阅读2.8k次。#.简介: WebView是Android提供的用来展示展示web页面的View,内部使用webkit浏览器引擎(一个轻量级的浏览器引擎),除了展示Web页面外,还可与Web页面内的JS脚本交互调用。WebView内部的WebSetting对象负责管理WebView的参数配置; WebViewClient负责处理WebView的各种请求和通知事件,在对应事件发生时会执行WebViewClient的对应回调; ChromeWebviewClient辅助Webview处理与JS一些交互......_android webview真正加载完成

随便推点

bitcoin 调试环境搭建-程序员宅基地

文章浏览阅读1.6k次。_bitcoin 调试环境搭建

曲线生成 | 图解B样条曲线生成原理(基本概念与节点生成算法)-程序员宅基地

文章浏览阅读4.3k次,点赞93次,收藏94次。为了解决贝塞尔曲线无法局部修正、控制性减弱、曲线次数过高、不易拼接的缺陷,引入B样条曲线(B-Spline)。本文介绍B样条曲线的基本概念:节点向量、支撑性、次数阶数、加权性质、节点生成算法等,为后续曲线计算打下基础。_样条曲线生成

CDH安装宝典之ClouderaManager_/opt/cloudera/cm-agent/service/mgmt/mgmt.sh: line -程序员宅基地

文章浏览阅读902次。配置本地repo库下载我的阿里云盘文件文件放置#创建目录mkdir -p /opt/cloudera/parcel-repo/mkdir -p /opt/cloudera/cm/yum install createrepoCDH 6.2.0 的三个文件放到/opt/cloudera/parcel-repo/中,并且注意把sha256后缀的文件名修改为sha#执行createrepo命令生成rpm元数据 最终/opt/cloudera/parcel-repo/会多一个repodata目录_/opt/cloudera/cm-agent/service/mgmt/mgmt.sh: line 76: /usr/java/jdk1.8.0_181

uni.canvasToTempFilePath在app正常,微信小程序报错: fail canvas is empty-程序员宅基地

文章浏览阅读943次,点赞2次,收藏2次。uni.canvasToTempFilePath_uni.canvastotempfilepath

SDRAM笔记_sdram 干扰-程序员宅基地

文章浏览阅读3.1k次。SRAM :静态RAM,不用刷新,速度可以非常快,像CPU内部的cache,都是静态RAM,缺点是一个内存单元需要的晶体管数量多,因而价格昂贵,容量不大。DRAM:动态RAM,需要刷新,容量大。SDRAM:同步动态RAM,需要刷新,速度较快,容量大。DDR SDRAM:双通道同步动态RAM,需要刷新,速度快,容量大。........................_sdram 干扰

Excel转SQL语句_excel数据怎么生成sql语句-程序员宅基地

文章浏览阅读7.3k次。假设表格有A、B、C、D四列数据,希望导入到你的数据库中表格table,对应的字段分别是col1、col2、col3、col4。_excel数据怎么生成sql语句

推荐文章

热门文章

相关标签